ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-10-31
    Description: Context. The first opportunity to detect indications for life outside of the Solar System may be provided already within the next decade with upcoming missions such as the James Webb Space Telescope (JWST), the European Extremely Large Telescope (E-ELT) and the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) mission, searching for atmospheric biosignatures on planets in the habitable zone of cool K- and M-stars. Nevertheless, their harsh stellar radiation and particle environment could lead to photochemical loss of atmospheric biosignatures. Aims. We aim to study the influence of cosmic rays on exoplanetary atmospheric biosignatures and the radiation environment considering feedbacks between energetic particle precipitation, climate, atmospheric ionization, neutral and ion chemistry, and secondary particle generation. Methods. We describe newly combined state-of-the-art modeling tools to study the impact of the radiation and particle environment, in particular of cosmic rays, on atmospheric particle interaction, atmospheric chemistry, and the climate-chemistry coupling in a self-consistent model suite. To this end, models like the Atmospheric Radiation Interaction Simulator (AtRIS), the Exoplanetary Terrestrial Ion Chemistry model (ExoTIC), and the updated coupled climate-chemistry model are combined. Results. In addition to comparing our results to Earth-bound measurements, we investigate the ozone production and -loss cycles as well as the atmospheric radiation dose profiles during quiescent solar periods and during the strong solar energetic particle event of February 23, 1956. Further, the scenario-dependent terrestrial transit spectra, as seen by the NIR-Spec infrared spectrometer onboard the JWST, are modeled. Amongst others, we find that the comparatively weak solar event drastically increases the spectral signal of HNO3, while significantly suppressing the spectral feature of ozone. Because of the slow recovery after such events, the latter indicates that ozone might not be a good biomarker for planets orbiting stars with high flaring rates.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: We present a climatology of the diurnal variation of short-lived atmospheric compounds, such as ClO, BrO, HO2, and HOCl, as well as longer-lived species: O3, the hydrogen chloride isotopes H35Cl and H37Cl, and HNO3. Measurements were taken by the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES). This spectrally resolving radiometer, with very low observation noise and altitude range from the lower stratosphere to the lower thermosphere (20–100km), was measuring vertical profiles of absorption spectra along a non-sun-synchronous orbit, thus observing at all local times. We used the retrieved volume mixing ratio profiles to compile climatologies that are a function of pressure, a horizontal coordinate (latitude or equivalent latitude), and a temporal coordinate (solar zenith angle or local solar time). The main product presented are climatologies with a high resolution of the temporal coordinate (diurnal variation climatologies). In addition, we provide climatologies with a high resolution of the horizontal coordinate (zonal climatologies).The diurnal variation climatologies are based on data periods of 2 months and the zonal climatologies on monthly data periods. Consideration of the SMILES time-space sampling patterns with respect to the averaging coordinates is a key issue for climatology creation, especially in case of diurnal variation climatologies. Biases induced by inhomogeneous sampling are minimized by carefully choosing the size of averaging bins. The sampling biases of the diurnal variation climatology of ClO and BrO are investigated in a comparison of homogeneously sampled model data versus SMILES-sampled model data from the stratospheric Lagrangian chemistry and transport model ATLAS. In most cases, the relative sampling error is in the range of 0–20%. The strongest impact of sampling biases is found where the species' temporal gradients are strongest (mostly at sunrise and sunset), with a relative error of 60–100%. The SMILES climatology data sets are available via the SMILES data distribution home page.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...