ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 02. Cryosphere::02.02. Glaciers::02.02.09. Snow  (1)
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (1)
  • 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods
  • Digilabs Pub., Bari, Italy  (2)
Collection
Years
  • 1
    Publication Date: 2017-04-04
    Description: Volcanoes are one of the major natural sources of several trace elements to the atmosphere: They contribute to atmospheric pollution by increasing the amount of reactive and greenhouse gases and aerosols. In particular, Mt. Etna is considered to be, on long-term average, the major global atmospheric point source of many environmental harmful compounds. Their emission occurs either through continuous passive degassing from open-conduit activity or through sporadic paroxysmal eruptive activity, in the form of gases, aerosols or particulate. For several months during the year (generally December-May), the summit of Mt. Etna is under a thick blanket of snow. This huge reservoir of frozen water, interacting with the volcanic plume, accumulates a great quantity of volcanogenic elements during the winter. Samples of snow were collected at different distances from summit craters along an 8 km radial transects, in the 2006 and 2007 winters. Each snow sample was analyzed for 37 elements in the laboratory using IC, ICP-OES and ICP-MS techniques. The impact of volcanic emissions is clearly detectable considering the opposite trends of pH and TDS (total dissolved solid) measured in snow samples with increasing distance from their “source”. The pH values range from 1.7 on the rim of the summit craters up to 7.6 at a distance of about 8 km, and TDS ranges from diluted samples (few mg/l) at distal sites, up to extremely concentrated samples (500 - 3500 mg/l) close to the emission vents. The acidity in precipitation around the volcano depends mainly on the concentrations of volcanogenic acid forming ions (SO2, HCl and HF), as well as on concentrations of mainly geogenic alkaline species, which may eventually neutralize the acidity. Regarding metals concentrations, there are orders of magnitude of difference between the different sites with decreasing values from the crater’s rim up to the farthest sites (5-8 km from craters). In particular three groups of elements were extremely enriched (many orders of magnitude higher) at the summit craters with respect to the distal samples: Halogens (Br, Cl, F, I) and S ascribable to volcanic gas contribution; Al, Fe and Ti deriving from magmatic silicate particulate; and elements such as Se, Cu, As, Bi, Cd, Tl, Pb and Hg which are highly mobile in the high temperature volcanic environment.
    Description: Published
    Description: Bari, Italy
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: Snow Chemistry ; Trace elements ; Etna ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 02. Cryosphere::02.02. Glaciers::02.02.09. Snow ; 02. Cryosphere::02.03. Ice cores::02.03.02. Atmospheric Chemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Volcanic and geothermal areas are one of the major natural sources of sulphur gases to the atmosphere. Hydrogen sulphide (H2S) is a toxic gas mainly associated to geothermal systems while sulphur dioxide (SO2) is released in huge quantities from volcanoes characterized by open conduit activity. Apart from being one of the most impressive geodynamic expressions, volcanoes are also an important tourist attraction. During the summer season the number of tourists visiting the crateric areas each day is on average many tens at Stromboli, hundreds at Vulcano, Santorini and Nisyros and thousands at Etna. Touristic exploitation of active volcanic areas cannot exempt from warranting a reasonable security to the visiting persons. But while many risks in these areas have been since long time considered, gas hazard, a very subtle risk, is often disregarded. The atmospheric concentrations and dispersion pattern of naturally emitted SO2 were measured at three volcanoes of southern Italy (Etna, Vulcano and Stromboli) while that of H2S at four volcanic/geothermal areas of Greece (Sousaki, Milos, Santorini and Nisyros). Measurements were made with a network of passive samplers positioned at about 1.5 m above the ground, which gave time-integrated values for periods from few days to 1 month. Samplers were placed in zones of the volcanoes with high tourist frequentation. Measured concentrations and dispersion pattern depend on the strength of the source (craters, fumaroles), meteorological conditions and geomorphology of the area. At Etna, Vulcano, Stromboli and Nisyros measured concentrations reach values that are absolutely dangerous to people affected by bronchial asthma or lung diseases. But considering that these are average values over periods from few days up to one month, concentrations could have reached much higher peak values dangerous also to healthy people. The present study evidences a peculiar volcanic risk connected to the touristic exploitation of volcanic areas. Such risk is particularly enhanced at Etna where elderly and not perfectly healthy people can easily reach, with cableway and off-road vehicles, areas with dangerous SO2 concentrations.
    Description: Published
    Description: Bari, Italy
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: sulphur gases ; passive samplers ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...