ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (32)
  • 1
    Publication Date: 2010-08-19
    Description: Data from General Circulation Models (GCMs) are often used to investigate hydrological impacts of climate change. However GCM data are known to have large biases, especially for precipitation. In this study the usefulness of GCM data for hydrological studies, with focus on discharge variability and extremes, was tested by using bias-corrected daily climate data of the 20CM3 control experiment from a selection of twelve GCMs as input to the global hydrological model PCR-GLOBWB. Results of these runs were compared with discharge observations of the GRDC and discharges calculated from model runs based on two meteorological datasets constructed from the observation-based CRU TS2.1 and ERA-40 reanalysis. In the first dataset the CRU TS 2.1 monthly timeseries were downscaled to daily timeseries using the ERA-40 dataset (ERA6190). This dataset served as a best guess of the past climate and was used to analyze the performance of PCR-GLOBWB. The second dataset was created from the ERA-40 timeseries bias-corrected with the CRU TS 2.1 dataset using the same bias-correction method as applied to the GCM datasets (ERACLM). Through this dataset the influence of the bias-correction method was quantified. The bias-correction was limited to monthly mean values of precipitation, potential evaporation and temperature, as our focus was on the reproduction of inter- and intra-annual variability. After bias-correction the spread in discharge results of the GCM based runs decreased and results were similar to results of the ERA-40 based runs, especially for rivers with a strong seasonal pattern. Overall the bias-correction method resulted in a slight reduction of global runoff and the method performed less well in arid and mountainous regions. However, deviations between GCM results and GRDC statistics did decrease for Q, Q90 and IAV. After bias-correction consistency amongst models was high for mean discharge and timing (Qpeak), but relatively low for inter-annual variability (IAV). This suggests that GCMs can be of use in global hydrological impact studies in which persistence is of less relevance (e.g. in case of flood rather than drought studies). Furthermore, the bias-correction influences mean discharges more than extremes, which has the positive consequence that changes in daily rainfall distribution and subsequent changes in discharge extremes will also be preserved when the bias-correction method is applied to future GCM datasets. However, it also shows that agreement between GCMs remains relatively small for discharge extremes. Because of the large deviations between observed and simulated discharge, in which both errors in climate forcing, model structure and to a lesser extent observations are accumulated, it is advisable not to work with absolute discharge values for the derivation of future discharge projections, but rather calculate relative changes by dividing the absolute change by the absolute discharge calculated for the control experiment.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-20
    Description: During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960–2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which are subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes, wetlands and reservoirs by means of the global hydrological model PCR-GLOBWB. We thus define blue water stress by comparing blue water availability with corresponding net total blue water demand by means of the commonly used, Water Scarcity Index. The results show a drastic increase in the global population living under water-stressed conditions (i.e. moderate to high water stress) due to growing water demand, primarily for irrigation, which has more than doubled from 1708/818 to 3708/1832 km3 yr−1 (gross/net) over the period 1960–2000. We estimate that 800 million people or 27% of the global population were living under water-stressed conditions for 1960. This number is eventually increased to 2.6 billion or 43% for 2000. Our results indicate that increased water demand is a decisive factor for heightened water stress in various regions such as India and North China, enhancing the intensity of water stress up to 200%, while climate variability is often a main determinant of extreme events. However, our results also suggest that in several emerging and developing economies (e.g. India, Turkey, Romania and Cuba) some of past extreme events were anthropogenically driven due to increased water demand rather than being climate-induced.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-11-15
    Description: As an initial step in assessing the prospect of using global hydrological models (GHMs) for hydrological forecasting, this study investigates the skill of the GHM PCR-GLOBWB in reproducing the occurrence of past extremes in monthly discharge on a global scale. Global terrestrial hydrology from 1958 until 2001 is simulated by forcing PCR-GLOBWB with daily meteorological data obtained by downscaling the CRU dataset to daily fields using the ERA-40 reanalysis. Simulated discharge values are compared with observed monthly streamflow records for a selection of 20 large river basins that represent all continents and a wide range of climatic zones. We assess model skill in three ways all of which contribute different information on the potential forecasting skill of a GHM. First, the general skill of the model in reproducing hydrographs is evaluated. Second, model skill in reproducing significantly higher and lower flows than the monthly normals is assessed in terms of skill scores used for forecasts of categorical events. Third, model skill in reproducing flood and drought events is assessed by constructing binary contingency tables for floods and droughts for each basin. The skill is then compared to that of a simple estimation of discharge from the water balance (P−E). The results show that the model has skill in all three types of assessments. After bias correction the model skill in simulating hydrographs is improved considerably. For most basins it is higher than that of the climatology. The skill is highest in reproducing monthly anomalies. The model also has skill in reproducing floods and droughts, with a markedly higher skill in floods. The model skill far exceeds that of the water balance estimate. We conclude that the prospect for using PCR-GLOBWB for monthly and seasonal forecasting of the occurrence of hydrological extremes is positive. We argue that this conclusion applies equally to other similar GHMs and LSMs, which may show sufficient skill to forecast the occurrence of monthly flow extremes.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-15
    Description: The current generation of large-scale hydrological models does not include a groundwater flow component. Large-scale groundwater models, involving aquifers and basins of multiple countries, are still rare mainly due to a lack of hydro-geological data which are usually only available in developed countries. In this study, we propose a novel approach to construct large-scale groundwater models by using global datasets that are readily available. As the test-bed, we use the combined Rhine-Meuse basin that contains groundwater head data used to verify the model output. We start by building a distributed land surface model (30 arc-second resolution) to estimate groundwater recharge and river discharge. Subsequently, a MODFLOW transient groundwater model is built and forced by the recharge and surface water levels calculated by the land surface model. Results are promising despite the fact that we still use an offline procedure to couple the land surface and MODFLOW groundwater models (i.e. the simulations of both models are separately performed). The simulated river discharges compare well to the observations. Moreover, based on our sensitivity analysis, in which we run several groundwater model scenarios with various hydro-geological parameter settings, we observe that the model can reasonably well reproduce the observed groundwater head time series. However, we note that there are still some limitations in the current approach, specifically because the offline-coupling technique simplifies the dynamic feedbacks between surface water levels and groundwater heads, and between soil moisture states and groundwater heads. Also the current sensitivity analysis ignores the uncertainty of the land surface model output. Despite these limitations, we argue that the results of the current model show a promise for large-scale groundwater modeling practices, including for data-poor environments and at the global scale.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-06-01
    Description: Hydrological processes control the behaviour of many unstable slopes, and their importance for landslide activity is generally accepted. The presence of fissures influences the storage capacity of a soil and affects the infiltration processes of rainfall. The effectiveness of the fissure network depends upon fissure size, their spatial distribution, and connectivity. Moreover, fissure connectivity is a dynamic characteristic, depending on the degree of saturation of the medium. This research aims to investigate the influence of the fissure network on hydrological responses of a landslide. Special attention is given to spatial and temporal variations in fissure connectivity, which makes fissures act both as preferential flow paths for deep infiltration (disconnected fissures) and as lateral groundwater drains (connected fissures). To this end, the hydrological processes that control the exchange of water between the fissure network and the matrix have been included in a spatially distributed hydrological and slope stability model. The ensuing feedbacks in landslide hydrology were explored by running the model with one year of meteorological forcing. The effect of dynamic fissure connectivity was evaluated by comparing simulations with static fissure patterns to simulations in which these patterns change as a function of soil saturation. The results highlight that fissure connectivity and fissure permeability control the water distribution within landslides. Making the fissure connectivity function of soil moisture results in composite behaviour spanning the above end members and introduces stronger seasonality of the hydrological responses.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-05-21
    Description: There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from the EM-DAT database and World Bank sources. We discuss and show sensitivities of the estimated risks with regard to the use of different climate input sets, decisions made in the downscaling algorithm, and different approaches to establish impact models.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-27
    Description: Potential evaporation (PET) is one of the main inputs of hydrological models. Yet, there is limited consensus on which PET equation is most applicable in hydrological climate impact assessments. In this study six different methods to derive global scale reference PET daily time series from Climate Forecast System Reanalysis (CFSR) data are compared: Penman-Monteith, Priestley-Taylor and original and re-calibrated versions of the Hargreaves and Blaney-Criddle method. The calculated PET time series are (1) evaluated against global monthly Penman-Monteith PET time series calculated from CRU data and (2) tested on their usability for modeling of global discharge cycles. A major finding is that for part of the investigated basins the selection of a PET method may have only a minor influence on the resulting river flow. Within the hydrological model used in this study the bias related to the PET method tends to decrease while going from PET, AET and runoff to discharge calculations. However, the performance of individual PET methods appears to be spatially variable, which stresses the necessity to select the most accurate and spatially stable PET method. The lowest root mean squared differences and the least significant deviations (95% significance level) between monthly CFSR derived PET time series and CRU derived PET were obtained for a cell-specific re-calibrated Blaney-Criddle equation. However, results show that this re-calibrated form is likely to be unstable under changing climate conditions and less reliable for the calculation of daily time series. Although often recommended, the Penman-Monteith equation applied to the CFSR data did not outperform the other methods in a evaluation against PET derived with the Penman-Monteith equation from CRU data. In arid regions (e.g. Sahara, central Australia, US deserts), the equation resulted in relatively low PET values and, consequently, led to relatively high discharge values for dry basins (e.g. Orange, Murray and Zambezi). Furthermore, the Penman-Monteith equation has a high data demand and the equation is sensitive to input data inaccuracy. Therefore, we recommend the re-calibrated form of the Hargreaves equation which globally gave reference PET values comparable to CRU derived values for multiple climate conditions. The resulting gridded daily PET time series provide a new reference dataset that can be used for future hydrological impact assessments in further research, or more specifically, for the statistical downscaling of daily PET derived from raw GCM data. The dataset can be downloaded from http://opendap.deltares.nl/thredds/dodsC/opendap/deltares/FEWS-IPCC.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-03-05
    Description: The importance of hydrological processes for landslide activity is generally accepted. However, the relationship between precipitation, hydrological responses and movement is not straightforward. Groundwater recharge is mostly controlled by the hydrological material properties and the structure (e.g., layering, preferential flow paths such as fissures) of the unsaturated zone. In slow-moving landslides, differential displacements caused by the bedrock structure complicate the hydrological regime due to continuous opening and closing of the fissures, creating temporary preferential flow paths systems for infiltration and groundwater drainage. The consecutive opening and closing of fissure aperture control the formation of a critical pore water pressure by creating dynamic preferential flow paths for infiltration and groundwater drainage. This interaction may explain the seasonal nature of the slow-moving landslide activity, including the often observed shifts and delays in hydrological responses when compared to timing, intensity and duration of precipitation. The main objective of this study is to model the influence of fissures on the hydrological dynamics of slow-moving landslide and the dynamic feedbacks between fissures, hydrology and slope stability. For this we adapt the spatially distributed hydrological and slope stability model (STARWARS) to account for geotechnical and hydrological feedbacks, linking between hydrological response of the landside and the dynamics of the fissure network and applied the model to the hydrologically controlled Super-Sauze landslide (South French Alps).
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-04-02
    Description: This study makes a thorough global assessment of the effects of climate change on hydrological regimes and their accompanying uncertainties. Meteorological data from twelve GCMs (SRES scenarios A1B and control experiment 20C3M) are used to drive the global hydrological model PCR-GLOBWB. This reveals in which regions of the world changes in hydrology can be detected that have a high likelihood and are consistent amongst the ensemble of GCMs. New compared to existing studies is: (1) the comparison of spatial patterns of regime changes and (2) the quantification of notable consistent changes calculated relative to the GCM specific natural variability. The resulting consistency maps indicate in which regions the likelihood of hydrological change is large. Projections of different GCMs diverge widely. This underscores the need of using a multi-model ensemble. Despite discrepancies amongst models, consistent results are revealed: by 2100 the GCMs project consistent decreases in discharge for southern Europe, southern Australia, parts of Africa and southwestern South-America. Discharge decreases strongly for most African rivers, the Murray and the Danube while discharge of monsoon influenced rivers slightly increases. In the Arctic regions river discharge increases and a phase-shift towards earlier peaks is observed. Results are comparable to previous global studies, with a few exceptions. Globally we calculated an ensemble mean discharge increase of more than ten percent. This increase contradicts previously estimated decreases, which is amongst others caused by the use of smaller GCM ensembles and different reference periods.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-09-03
    Description: Changes in water resources availability can be expected as consequences of climate change, population growth, economic development and environmental considerations. A two-stage modeling approach is used to explore the impact of these changes in the Middle East and North Africa (MENA) region. An advanced, physically based, distributed, hydrological model is applied to determine the internal and external renewable water resources for the current situation and under future changes. Subsequently, a water allocation model is used to combine the renewable water resources with sectoral water demands. Results show that total demand in the region will increase to 393 km3 yr−1 in 2050, while total water shortage will grow to 199 km3 yr−1 in 2050 for the average climate change projection, an increase of 157 km3 yr−1. This increase in shortage is the combined impact of an increase in water demand by 50% with a decrease in water supply by 12%. Uncertainty, based on the output of the nine GCMs applied, reveals that expected water shortage ranges from 85 km3 yr−1 to 283 km3 yr−1~in 2050. The analysis shows that 22% of the water shortage can be attributed to climate change and 78% to changes in socio-economic factors.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...