ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-09-07
    Description: Estimating how much water is flowing through rivers at the global scale is challenging due to a lack of observations in space and time. A way forward is to optimally combine the global network of earth system observations with advanced numerical weather prediction (NWP) models to generate consistent spatio-temporal maps of land, ocean, and atmospheric variables of interest, which is known as a reanalysis. While the current generation of NWP models output runoff at each grid cell, they currently do not produce river discharge at catchment scales directly and thus have limited utility in hydrological applications such as flood and drought monitoring and forecasting. This is overcome in the Global Flood Awareness System (GloFAS; http://www.globalfloods.eu/, last access: 28 June 2020) by coupling surface and sub-surface runoff from the Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) land surface model used within ECMWF's latest global atmospheric reanalysis (ERA5) with the LISFLOOD hydrological and channel routing model. The aim of this paper is to describe and evaluate the GloFAS-ERA5 global river discharge reanalysis dataset launched on 5 November 2019 (version 2.1 release). The river discharge reanalysis is a global gridded dataset with a horizontal resolution of 0.1∘ at a daily time step. An innovative feature is that it is produced in an operational environment so is available to users from 1 January 1979 until near real time (2 to 5 d behind real time). The reanalysis was evaluated against a global network of 1801 daily river discharge observation stations. Results found that the GloFAS-ERA5 reanalysis was skilful against a mean flow benchmark in 86 % of catchments according to the modified Kling–Gupta efficiency skill score, although the strength of skill varied considerably with location. The global median Pearson correlation coefficient was 0.61 with an interquartile range of 0.44 to 0.74. The long-term and operational nature of the GloFAS-ERA5 reanalysis dataset provides a valuable dataset to the user community for applications ranging from monitoring global flood and drought conditions to the identification of hydroclimatic variability and change and as raw input for post-processing and machine learning methods that can add further value. The dataset is openly available from the Copernicus Climate Change Service Climate Data Store: https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-glofas-historical?tab=overview (last access: 28 June 2020) with the following DOI: https://doi.org/10.24381/cds.a4fdd6b9 (C3S, 2019).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-05
    Description: Too often, credible scientific early warning information of increased disaster risk does not result in humanitarian action. With financial resources tilted heavily towards response after a disaster, disaster managers have limited incentive and ability to process complex scientific data, including uncertainties. These incentives are beginning to change, with the advent of several new forecast-based financing systems that provide funding based on a forecast of an extreme event. Given the changing landscape, here we demonstrate a method to select and use appropriate forecasts for specific humanitarian disaster prevention actions, even in a data-scarce location. This action-based forecasting methodology takes into account the parameters of each action, such as action lifetime, when verifying a forecast. Forecasts are linked with action based on an understanding of (1) the magnitude of previous flooding events and (2) the willingness to act "in vain" for specific actions. This is applied in the context of the Uganda Red Cross Society forecast-based financing pilot project, with forecasts from the Global Flood Awareness System (GloFAS). Using this method, we define the "danger level" of flooding, and we select the probabilistic forecast triggers that are appropriate for specific actions. Results from this methodology can be applied globally across hazards and fed into a financing system that ensures that automatic, pre-funded early action will be triggered by forecasts.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-27
    Description: Extreme flooding impacts millions of people that live within the Amazon floodplain. Global Hydrological Models (GHMs) are frequently used to assess and inform the management of flood risk, but knowledge on the skill of available models is required to inform their use and development. This paper presents an intercomparison of eight different GHMs freely available from collaborators of the Global Flood Partnership (GFP) for simulating floods in the Amazon basin. To gain insight into the strengths and shortcomings of each model, we assess their ability to reproduce daily and annual peak river flows against gauged observations at 75 hydrological stations over a 19-year period (1997–2015). As well as highlighting regional variability in the accuracy of simulated streamflow these results indicate that (a) the meteorological input is the dominant control on the accuracy of both daily and annual maximum river flows, and (b) groundwater and routing calibration of Lisflood based on daily river flows has no impact on the ability to simulate flood peaks for the chosen river basin. These findings have important relevance for applications of large-scale hydrological models, including analysis of the impact of climate variability, assessment of the influence of long-term changes such as land-use and anthropogenic climate change, the assessment of flood likelihood, and for flood forecasting systems.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-05-14
    Description: Global overviews of upcoming flood and drought events are key for many applications, including disaster risk reduction initiatives. Seasonal forecasts are designed to provide early indications of such events weeks, or even months, in advance, but seasonal forecasts for hydrological variables at large or global scales are few and far between. Here, we present the first operational global scale seasonal hydro-meteorological forecasting system: GloFAS-Seasonal. Developed as an extension of the Global Flood Awareness System (GloFAS), GloFAS-Seasonal couples seasonal meteorological forecasts from ECMWF with a hydrological model, to provide openly available probabilistic forecasts of river flow out to 4 months ahead for the global river network. This system has potential benefits not only for disaster risk reduction through early awareness of floods and droughts, but also for water-related sectors such as agriculture and water resources management, in particular for regions where no other forecasting system exists. We describe the key hydro-meteorological components and computational framework of GloFAS-Seasonal, alongside the forecast products available, before discussing initial evaluation results and next steps.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-08-21
    Description: Global overviews of upcoming flood and drought events are key for many applications, including disaster risk reduction initiatives. Seasonal forecasts are designed to provide early indications of such events weeks or even months in advance, but seasonal forecasts for hydrological variables at large or global scales are few and far between. Here, we present the first operational global-scale seasonal hydro-meteorological forecasting system: GloFAS-Seasonal. Developed as an extension of the Global Flood Awareness System (GloFAS), GloFAS-Seasonal couples seasonal meteorological forecasts from ECMWF with a hydrological model to provide openly available probabilistic forecasts of river flow out to 4 months ahead for the global river network. This system has potential benefits not only for disaster risk reduction through early awareness of floods and droughts, but also for water-related sectors such as agriculture and water resources management, in particular for regions where no other forecasting system exists. We describe the key hydro-meteorological components and computational framework of GloFAS-Seasonal, alongside the forecast products available, before discussing initial evaluation results and next steps.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Extreme flooding impacts millions of people that live within the Amazon floodplain. Global hydrological models (GHMs) are frequently used to assess and inform the management of flood risk, but knowledge on the skill of available models is required to inform their use and development. This paper presents an intercomparison of eight different GHMs freely available from collaborators of the Global Flood Partnership (GFP) for simulating floods in the Amazon basin. To gain insight into the strengths and shortcomings of each model, we assess their ability to reproduce daily and annual peak river flows against gauged observations at 75 hydrological stations over a 19-year period (1997–2015). As well as highlighting regional variability in the accuracy of simulated streamflow, these results indicate that (a) the meteorological input is the dominant control on the accuracy of both daily and annual maximum river flows, and (b) groundwater and routing calibration of Lisflood based on daily river flows has no impact on the ability to simulate flood peaks for the chosen river basin. These findings have important relevance for applications of large-scale hydrological models, including analysis of the impact of climate variability, assessment of the influence of long-term changes such as land-use and anthropogenic climate change, the assessment of flood likelihood, and for flood forecasting systems.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-07
    Description: Framed within the Copernicus Climate Change Service (C3S) of the European Commission, the European Centre for Medium-Range Weather Forecasts (ECMWF) is producing an enhanced global dataset for the land component of the fifth generation of European ReAnalysis (ERA5), hereafter referred to as ERA5-Land. Once completed, the period covered will span from 1950 to the present, with continuous updates to support land monitoring applications. ERA5-Land describes the evolution of the water and energy cycles over land in a consistent manner over the production period, which, among others, could be used to analyse trends and anomalies. This is achieved through global high-resolution numerical integrations of the ECMWF land surface model driven by the downscaled meteorological forcing from the ERA5 climate reanalysis, including an elevation correction for the thermodynamic near-surface state. ERA5-Land shares with ERA5 most of the parameterizations that guarantees the use of the state-of-the-art land surface modelling applied to numerical weather prediction (NWP) models. A main advantage of ERA5-Land compared to ERA5 and the older ERA-Interim is the horizontal resolution, which is enhanced globally to 9 km compared to 31 km (ERA5) or 80 km (ERA-Interim), whereas the temporal resolution is hourly as in ERA5. Evaluation against independent in situ observations and global model or satellite-based reference datasets shows the added value of ERA5-Land in the description of the hydrological cycle, in particular with enhanced soil moisture and lake description, and an overall better agreement of river discharge estimations with available observations. However, ERA5-Land snow depth fields present a mixed performance when compared to those of ERA5, depending on geographical location and altitude. The description of the energy cycle shows comparable results with ERA5. Nevertheless, ERA5-Land reduces the global averaged root mean square error of the skin temperature, taking as reference MODIS data, mainly due to the contribution of coastal points where spatial resolution is important. Since January 2020, the ERA5-Land period available has extended from January 1981 to the near present, with a 2- to 3-month delay with respect to real time. The segment prior to 1981 is in production, aiming for a release of the whole dataset in summer/autumn 2021. The high spatial and temporal resolution of ERA5-Land, its extended period, and the consistency of the fields produced makes it a valuable dataset to support hydrological studies, to initialize NWP and climate models, and to support diverse applications dealing with water resource, land, and environmental management. The full ERA5-Land hourly (Muñoz-Sabater, 2019a) and monthly (Muñoz-Sabater, 2019b) averaged datasets presented in this paper are available through the C3S Climate Data Store at https://doi.org/10.24381/cds.e2161bac and https://doi.org/10.24381/cds.68d2bb30, respectively.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...