ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-02-02
    Description: We propose the Chaotian Eon to demarcate geologic time from the origin of the Solar System to the Moon-forming impact on Earth. This separates the solar system wide processes of planet formation from the subsequent divergent evolution of the inner planets. We further propose the division of the Hadean Eon into eras and periods and naming the proto-Earth Tellus.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-11-24
    Description: We propose the Chaotian Eon to demarcate geologic time from the origin of the Solar System to the Moon-forming impact on Earth. This separates the solar system wide processes of planet formation from the subsequent divergent evolution of the inner planets. We further propose the division of the Hadean Eon into eras and periods and naming the proto-Earth Tellus.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-06-10
    Description: We investigate the role which clouds could play in resolving the Faint Young Sun Paradox (FYSP). Lower solar luminosity in the past means that less energy was absorbed on Earth (a forcing of -50 W m−2 during the late Archean), but geological evidence points to the Earth being at least as warm as it is today, with only very occasional glaciations. We perform radiative calculations on a single global mean atmospheric column. We select a nominal set of three layered, randomly overlapping clouds, which are both consistent with observed cloud climatologies and reproduce the observed global mean energy budget of Earth. By varying the fraction, thickness, height and particle size of these clouds we conduct a wide exploration of how changed clouds could affect climate, thus constraining how clouds could contribute to resolving the FYSP. Low clouds reflect sunlight but have little greenhouse effect. Removing them entirely gives a forcing of +25 W m−2 whilst more modest reduction in their efficacy gives a forcing of +10 to +15 W m−2. For high clouds, the greenhouse effect dominates. It is possible to generate +50 W m−2 forcing from enhancing these, but this requires making them 3.5 times thicker and 14 K colder than the standard high cloud in our nominal set and expanding their coverage to 100% of the sky. Such changes are not credible. More plausible changes would generate no more that +15 W m−2 forcing. Thus neither fewer low clouds nor more high clouds can provide enough forcing to resolve the FYSP. Decreased surface albedo can contribute no more than +5 W m−2 forcing. Some models which have been applied to the FYSP do not include clouds at all. These overestimate the forcing due to increased CO2 by 20 to 25% when pCO2 is 0.01 to 0.1 bar.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-04
    Description: We investigate the role which clouds could play in resolving the Faint Young Sun Paradox (FYSP). Lower solar luminosity in the past means that less energy was absorbed on Earth (a forcing of −50 W m−2 during the late Archean), but geological evidence points to the Earth having been at least as warm as it is today, with only very occasional glaciations. We perform radiative calculations on a single global mean atmospheric column. We select a nominal set of three layered, randomly overlapping clouds, which are both consistent with observed cloud climatologies and reproduced the observed global mean energy budget of Earth. By varying the fraction, thickness, height and particle size of these clouds we conduct a wide exploration of how changed clouds could affect climate, thus constraining how clouds could contribute to resolving the FYSP. Low clouds reflect sunlight but have little greenhouse effect. Removing them entirely gives a forcing of +25 W m−2 whilst more modest reduction in their efficacy gives a forcing of +10 to +15 W m−2. For high clouds, the greenhouse effect dominates. It is possible to generate +50 W m−2 forcing from enhancing these, but this requires making them 3.5 times thicker and 14 K colder than the standard high cloud in our nominal set and expanding their coverage to 100% of the sky. Such changes are not credible. More plausible changes would generate no more than +15 W m−2 forcing. Thus neither fewer low clouds nor more high clouds can provide enough forcing to resolve the FYSP. Decreased surface albedo can contribute no more than +5 W m−2 forcing. Some models which have been applied to the FYSP do not include clouds at all. These overestimate the forcing due to increased CO2 by 20 to 25% when pCO2 is 0.01 to 0.1 bar.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...