ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2017-12-22
    Description: We report measurements of bromine monoxide (BrO) and use an observationally constrained chemical box model to infer total gas-phase inorganic bromine (Bry) over the tropical western Pacific Ocean (tWPO) during the CONTRAST field campaign (January–February 2014). The observed BrO and inferred Bry profiles peak in the marine boundary layer (MBL), suggesting the need for a bromine source from sea-salt aerosol (SSA), in addition to organic bromine (CBry). Both profiles are found to be C-shaped with local maxima in the upper free troposphere (FT). The median tropospheric BrO vertical column density (VCD) was measured as 1.6×1013 molec cm−2, compared to model predictions of 0.9×1013 molec cm−2 in GEOS-Chem (CBry but no SSA source), 0.4×1013 molec cm−2 in CAM-Chem (CBry and SSA), and 2.1×1013 molec cm−2 in GEOS-Chem (CBry and SSA). Neither global model fully captures the C-shape of the Bry profile. A local Bry maximum of 3.6 ppt (2.9–4.4 ppt; 95 % confidence interval, CI) is inferred between 9.5 and 13.5 km in air masses influenced by recent convective outflow. Unlike BrO, which increases from the convective tropical tropopause layer (TTL) to the aged TTL, gas-phase Bry decreases from the convective TTL to the aged TTL. Analysis of gas-phase Bry against multiple tracers (CFC-11, H2O ∕ O3 ratio, and potential temperature) reveals a Bry minimum of 2.7 ppt (2.3–3.1 ppt; 95 % CI) in the aged TTL, which agrees closely with a stratospheric injection of 2.6 ± 0.6 ppt of inorganic Bry (estimated from CFC-11 correlations), and is remarkably insensitive to assumptions about heterogeneous chemistry. Bry increases to 6.3 ppt (5.6–7.0 ppt; 95 % CI) in the stratospheric "middleworld" and 6.9 ppt (6.5–7.3 ppt; 95 % CI) in the stratospheric "overworld". The local Bry minimum in the aged TTL is qualitatively (but not quantitatively) captured by CAM-Chem, and suggests a more complex partitioning of gas-phase and aerosol Bry species than previously recognized. Our data provide corroborating evidence that inorganic bromine sources (e.g., SSA-derived gas-phase Bry) are needed to explain the gas-phase Bry budget in the upper free troposphere and TTL. They are also consistent with observations of significant bromide in Upper Troposphere–Lower Stratosphere aerosols. The total Bry budget in the TTL is currently not closed, because of the lack of concurrent quantitative measurements of gas-phase Bry species (i.e., BrO, HOBr, HBr, etc.) and aerosol bromide. Such simultaneous measurements are needed to (1) quantify SSA-derived Bry in the upper FT, (2) test Bry partitioning, and possibly explain the gas-phase Bry minimum in the aged TTL, (3) constrain heterogeneous reaction rates of bromine, and (4) account for all of the sources of Bry to the lower stratosphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-07
    Description: We report measurements of bromine monoxide (BrO) and use an observationally constrained chemical box-model to infer total gas phase inorganic bromine (Bry) over the tropical Western Pacific Ocean (tWPO) during the CONTRAST field campaign (January–February 2014). The median tropospheric BrO Vertical Column Density (VCD) over the tWPO was measured as 1.6 × 1013 molec cm−2, compared to model predictions of 0.4 × 1013 in CAM-Chem, 0.9 × 1013 in GEOS-Chem, and 2.1 × 1013 in GEOS-Chem with a sea-salt aerosol (SSA) bromine source. The observed BrO and inferred Bry profiles is found to be C-shaped in the troposphere, with local maxima in the marine boundary layer (MBL) and in the upper free troposphere. Neither global model fully captures this profile shape. Between 6 and 13.5 km, the inferred Bry is highly sensitive to assumptions about the rate of heterogeneous bromine recycling (depends on the surface area of ice/aerosols), and the inclusion of a SSA bromine source. A local Bry maximum of 3.6 ppt (2.3–11.1 ppt, 95 % CI) is observed between 9.5 and 13.5 km in air masses influenced by recent convective outflow. Unlike BrO, which increases from the convective TTL to the aged TTL, gas phase Bry decreases from the convective TTL to the aged TTL. Analysis of gas phase Bry against multiple tracers (CFC-11, H2O / O3 ratio, and θ) reveals a Bry minimum of 2.7 ppt (2.4–3.0 ppt, 95 % CI) in the aged TTL, which is remarkably insensitive to assumptions about heterogeneous chemistry. Bry increases to 6.3 ppt (5.9–6.7 ppt, 95 % CI) in the stratospheric middleworld, and 6.9 ppt (6.7–7.1 ppt, 95 % CI) in the stratospheric overworld. The local Bry minimum in the aged TTL is qualitatively (but not quantitatively) captured by CAM-chem, and suggests a more complex partitioning of gas phase and aerosol Bry species than previously recognized. Our data provide corroborating evidence that inorganic bromine sources (e.g., SSA derived gas phase Bry) are needed to explain the gas phase Bry budget in the TTL. They are also consistent with observations of significant bromide in UTLS aerosols. The total Bry budget in the TTL is currently not closed, because of the lack of concurrent quantitative measurements of gas phase Bry species (i.e., BrO, HOBr, HBr, etc.) and aerosol bromide. These simultaneous measurements are needed 1) to quantify SSA derived Bry aloft, 2) to test Bry partitioning, and explain the gas phase Bry minimum in the aged TTL, 3) to constrain heterogeneous reaction rates of bromine, and 4) to account for all of the sources of Bry to the lower stratosphere.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...