ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-10-24
    Description: The Extended-range Atmospheric Emitted Radiance Interferometer (E-AERI) is a moderate resolution (1 cm−1) Fourier transform infrared spectrometer for measuring the absolute downwelling infrared spectral radiance from the atmosphere between 400 and 3000 cm−1. The extended spectral range of the instrument permits monitoring of the 400–550 cm−1 (20–25 μm) region, where most of the infrared surface cooling currently occurs in the dry air of the Arctic. Spectra from the E-AERI have the potential to provide information about radiative balance, trace gases, and cloud properties in the Canadian high Arctic. Calibration, performance evaluation, and certification of the E-AERI were performed at the University of Wisconsin Space Science and Engineering Centre from September to October 2008. The instrument was then installed at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Lab at Eureka, Nunavut, in October 2008, where it acquired one year of data. Measurements are taken every seven minutes year-round, including polar night when the solar-viewing spectrometers at PEARL are not operated. A similar instrument, the University of Idaho's Polar AERI (P-AERI), was installed at the Zero-altitude PEARL Auxiliary Laboratory (0PAL) from March 2006 to June 2009. During the period of overlap, these two instruments provided calibrated radiance measurements from two altitudes. A fast line-by-line radiative transfer model is used to simulate the downwelling radiance at both altitudes; the largest differences (simulation-measurement) occur in spectral regions strongly influenced by atmospheric temperature and/or water vapour. The presence of two AERI instruments at close proximity but two different altitudes allowed for an investigation of the surface radiative forcing by a thin, low ice cloud; the ice cloud resulted in a 6% increase in irradiance. The presence of clouds creates a large surface radiative forcing in the Arctic, particularly in the 750–1200 cm−1 region where the downwelling radiance is several times greater than clear-sky radiances, which is significantly larger than in other more humid regions.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-06
    Description: The Extended-range Atmospheric Emitted Radiance Interferometer (E-AERI) is a moderate resolution (1 cm−1) Fourier transform infrared spectrometer for measuring the absolute downwelling infrared spectral radiance from the atmosphere between 400 and 3000 cm−1. The extended spectral range of the instrument permits monitoring of the 400–550 cm−1 (20–25 μm) region, where most of the infrared surface cooling currently occurs in the dry air of the Arctic. Spectra from the E-AERI have the potential to provide information about radiative balance, trace gases, and cloud properties in the Canadian high Arctic. Calibration, performance evaluation, and certification of the E-AERI were performed at the University of Wisconsin Space Science and Engineering Centre from September to October 2008. The instrument was then installed at the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Lab (610 m altitude) at Eureka, Nunavut, in October 2008, where it acquired one year of data. Measurements are taken every seven minutes year-round, including polar night when the solar-viewing spectrometers at PEARL are not operated. A similar instrument, the University of Idaho's Polar AERI (P-AERI), was installed at the Zero-altitude PEARL Auxiliary Laboratory (0PAL), 15 km away from the PEARL Ridge Lab, from March 2006 to June 2009. During the period of overlap, these two instruments provided calibrated radiance measurements from two altitudes. A fast line-by-line radiative transfer model is used to simulate the downwelling radiance at both altitudes; the largest differences (simulation-measurement) occur in spectral regions strongly influenced by atmospheric temperature and/or water vapour. The two AERI instruments at close proximity but located at two different altitudes are well-suited for investigating cloud forcing. As an example, it is shown that a thin, low ice cloud resulted in a 6% increase in irradiance. The presence of clouds creates a large surface radiative forcing in the Arctic, particularly in the 750–1200 cm−1 region where the downwelling radiance is several times greater than clear-sky radiances, which is significantly larger than in other more humid regions.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-14
    Description: Optically thin ice clouds play an important role in polar regions due to their effect on cloud radiative impact and precipitation on the surface. Cloud bases can be detected by lidar-based ceilometers that run continuously and therefore have the potential to provide basic cloud statistics including cloud frequency, base height and vertical structure. Despite their importance, thin clouds are however not well detected by the standard cloud base detection algorithm of most ceilometers operational at Arctic and Antarctic stations. This paper presents the Polar Threshold (PT) algorithm that was developed to detect optically thin hydrometeor layers (optical depth τ ≥ 0.01). The PT algorithm detects the first hydrometeor layer in a vertical attenuated backscatter profile exceeding a predefined threshold in combination with noise reduction and averaging procedures. The optimal backscatter threshold of 3 × 10−4 km−1 sr−1 for cloud base detection was objectively derived based on a sensitivity analysis using data from Princess Elisabeth, Antarctica and Summit, Greenland. The algorithm defines cloudy conditions as any atmospheric profile containing a hydrometeor layer at least 50 m thick. A comparison with relative humidity measurements from radiosondes at Summit illustrates the algorithm's ability to significantly differentiate between clear sky and cloudy conditions. Analysis of the cloud statistics derived from the PT algorithm indicates a year-round monthly mean cloud cover fraction of 72% at Summit without a seasonal cycle. The occurrence of optically thick layers, indicating the presence of supercooled liquid, shows a seasonal cycle at Summit with a monthly mean summer peak of 40%. The monthly mean cloud occurrence frequency in summer at Princess Elisabeth is 47%, which reduces to 14% for supercooled liquid cloud layers. Our analyses furthermore illustrate the importance of optically thin hydrometeor layers located near the surface for both sites, with 87% of all detections below 500 m for Summit and 80% below 2 km for Princess Elisabeth. These results have implications for using satellite-based remotely sensed cloud observations, like CloudSat, that may be insensitive for hydrometeors near the surface. The results of this study highlight the potential of the PT algorithm to extract information in polar regions about a wide range of hydrometeor types from measurements by the robust and relatively low-cost ceilometer instrument.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-08
    Description: Multi-instrument, ground-based measurements provide unique and comprehensive datasets of the atmosphere for a specific location over long periods of time and resulting data compliments past and existing global satellite observations. This paper explores the effect of ice hydrometeors on ground-based, high frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland from 2010–2013. Data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m−2 or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high frequency microwave channels: 90, 150, and 225 GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. This measured ice signature was then compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single scattering properties for several ice habits. Initial model results compare well against the four years of summer season isolated ice signature in the high-frequency microwave channels.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-11-04
    Description: Iron chemistry measurements were conducted during summer 2007 at two distinct locations in the Baltic Sea (Gotland Deep and Landsort Deep) to evaluate the role of iron for cyanobacterial bloom development in these estuarine waters. Depth profiles of Fe(II) were measured by chemiluminescent flow injection analysis (CL-FIA). Up to 0.9 nmol Fe(II) L−1 were detected in light penetrated surface waters, which constitutes up to 20% to the dissolved Fe pool. This bioavailable iron source is a major contributor to the Fe requirements of Baltic Sea phytoplankton and apparently plays a major role for cyanobacterial bloom development during our study. Measured Fe(II) half life times in oxygenated water exceed predicted values and indicate organic Fe(II) complexation. Potential sources for Fe(II) ligands, including rainwater, are discussed. Fe(II) concentrations of up to 1.44 nmol L−1 were detected at water depths below the euphotic zone, but above the oxic anoxic interface. Mixed layer depths after strong wind events are not deep enough in summer time to penetrate the oxic-anoxic boundary layer. However, Fe(II) from anoxic bottom water may enter the sub-oxic zone via diapycnal mixing and diffusion.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-03-19
    Description: Based on an international workshop (Gothenburg, 14–16 May 2008), this review article aims to combine interdisciplinary knowledge from coastal and open ocean research on iron biogeochemistry. The major scientific findings of the past decade are structured into sections on natural and artificial iron fertilization, iron inputs into coastal and estuarine systems, colloidal iron and organic matter, and biological processes. Potential effects of global climate change, particularly ocean acidification, on iron biogeochemistry are discussed. The findings are synthesized into recommendations for future research areas.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-08-06
    Description: Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5×105 km2) in the western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history, thus allowing us to account for all major fire and logging events over the last 30 years. For NEP, a 23-year record (1980–2002) of distributed meteorology (1 km resolution) at the daily time step was used to drive a process-based carbon cycle model (Biome-BGC). For NBP, fire emissions were computed from remote sensing based estimates of area burned and our mapped biomass estimates. Our estimates for the contribution of logging and crop harvest removals to NBP were from the model simulations and were checked against public records of forest and crop harvesting. The predominately forested ecoregions within our study region had the highest NEP sinks, with ecoregion averages up to 197 gC m−2 yr−1. Agricultural ecoregions were also NEP sinks, reflecting the imbalance of NPP and decomposition of crop residues. For the period 1996–2000, mean NEP for the study area was 17.0 TgC yr−1, with strong interannual variation (SD of 10.6). The sum of forest harvest removals, crop removals, and direct fire emissions amounted to 63% of NEP, leaving a mean NBP of 6.1 TgC yr−1. Carbon sequestration was predominantly on public forestland, where the harvest rate has fallen dramatically in the recent years. Comparison of simulation results with estimates of carbon stocks, and changes in carbon stocks, based on forest inventory data showed generally good agreement. The carbon sequestered as NBP, plus accumulation of forest products in slow turnover pools, offset 51% of the annual emissions of fossil fuel CO2 for the state. State-level NBP dropped below zero in 2002 because of the combination of a dry climate year and a large (200 000 ha) fire. These results highlight the strong influence of land management and interannual variation in climate on the terrestrial carbon flux in the temperate zone.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-12
    Description: The Climate Research Facility of the US Department of Energy's Atmospheric Radiation Measurement (ARM) Program operates a network of ground-based microwave radiometers. Data and retrievals from these instruments have been available to the scientific community for almost 20 yr. In the past five years the network has expanded to include a total of 22 microwave radiometers deployed in various locations around the world. The new instruments cover a frequency range between 22 and 197 GHz and are consistently and automatically calibrated. The latest addition to the network is a new generation of three-channel radiometers, currently in the early stage of deployment at all ARM sites. The network has been specifically designed to achieve increased accuracy in the retrieval of precipitable water vapor (PWV) and cloud liquid water path (LWP) with the long-term goal of providing the scientific community with reliable, calibrated radiometric data and retrievals of important geophysical quantities with well-characterized uncertainties. The radiometers provide high-quality, continuous datasets that can be utilized in a wealth of applications and scientific studies. This paper presents an overview of the microwave instrumentation, calibration procedures, data, and retrievals that are available for download from the ARM data archive.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-05-06
    Description: Optically thin ice and mixed-phase clouds play an important role in polar regions due to their effect on cloud radiative impact and precipitation. Cloud-base heights can be detected by ceilometers, low-power backscatter lidars that run continuously and therefore have the potential to provide basic cloud statistics including cloud frequency, base height and vertical structure. The standard cloud-base detection algorithms of ceilometers are designed to detect optically thick liquid-containing clouds, while the detection of thin ice clouds requires an alternative approach. This paper presents the polar threshold (PT) algorithm that was developed to be sensitive to optically thin hydrometeor layers (minimum optical depth τ ≥ 0.01). The PT algorithm detects the first hydrometeor layer in a vertical attenuated backscatter profile exceeding a predefined threshold in combination with noise reduction and averaging procedures. The optimal backscatter threshold of 3 × 10−4 km−1 sr−1 for cloud-base detection near the surface was derived based on a sensitivity analysis using data from Princess Elisabeth, Antarctica and Summit, Greenland. At higher altitudes where the average noise level is higher than the backscatter threshold, the PT algorithm becomes signal-to-noise ratio driven. The algorithm defines cloudy conditions as any atmospheric profile containing a hydrometeor layer at least 90 m thick. A comparison with relative humidity measurements from radiosondes at Summit illustrates the algorithm's ability to significantly discriminate between clear-sky and cloudy conditions. Analysis of the cloud statistics derived from the PT algorithm indicates a year-round monthly mean cloud cover fraction of 72% (±10%) at Summit without a seasonal cycle. The occurrence of optically thick layers, indicating the presence of supercooled liquid water droplets, shows a seasonal cycle at Summit with a monthly mean summer peak of 40 % (±4%). The monthly mean cloud occurrence frequency in summer at Princess Elisabeth is 46% (±5%), which reduces to 12% (±2.5%) for supercooled liquid cloud layers. Our analyses furthermore illustrate the importance of optically thin hydrometeor layers located near the surface for both sites, with 87% of all detections below 500 m for Summit and 80% below 2 km for Princess Elisabeth. These results have implications for using satellite-based remotely sensed cloud observations, like CloudSat that may be insensitive for hydrometeors near the surface. The decrease of sensitivity with height, which is an inherent limitation of the ceilometer, does not have a significant impact on our results. This study highlights the potential of the PT algorithm to extract information in polar regions from various hydrometeor layers using measurements by the robust and relatively low-cost ceilometer instrument.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-04-05
    Description: Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5×105 km2) in the western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history, thus allowing us to account for all major fire and logging events over the last 30 years. For NEP, a 23-year record (1980–2002) of distributed meteorology (1 km resolution) at the daily time step was used to drive a process-based carbon cycle model (Biome-BGC). For NBP, fire emissions were computed from remote sensing based estimates of area burned and our mapped biomass estimates. Our estimates for the contribution of logging and crop harvest removals to NBP were from the model simulations and were checked against public records of forest and crop harvesting. The predominately forested ecoregions within our study region had the highest NEP sinks, with ecoregion averages up to 197 gC m−2 yr−1. Agricultural ecoregions were also NEP sinks, reflecting the imbalance of NPP and decomposition of crop residues. For the period 1996–2000, mean NEP for the study area was 17.0 TgC yr−1, with strong interannual variation (SD of 10.6). The sum of forest harvest removals, crop removals, and direct fire emissions amounted to 63% of NEP, leaving a mean NBP of 6.1 TgC yr−1. Carbon sequestration was predominantly on public forestland, where the harvest rate has fallen dramatically in the recent years. Comparison of simulation results with estimates of carbon stocks, and changes in carbon stocks, based on forest inventory data showed generally good agreement. The carbon sequestered as NBP, plus accumulation of forest products in slow turnover pools, offset 51% of the annual emissions of fossil fuel CO2 for the state. State-level NBP dropped below zero in 2002 because of the combination of a dry climate year and a large (200 000 ha) fire. These results highlight the strong influence of land management and interannual variation in climate on the terrestrial carbon flux in the temperate zone.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...