ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (10)
  • 1
    Publication Date: 2020-06-04
    Description: KORUS-AQ was an international cooperative air quality field study in South Korea that measured local and remote sources of air pollution affecting the Korean Peninsula during May–June 2016. Some of the largest aerosol mass concentrations were measured during a Chinese haze transport event (24 May). Air quality forecasts using the WRF-Chem model with aerosol optical depth (AOD) data assimilation captured AOD during this pollution episode but overpredicted surface particulate matter concentrations in South Korea, especially PM2.5, often by a factor of 2 or larger. Analysis revealed multiple sources of model deficiency related to the calculation of optical properties from aerosol mass that explain these discrepancies. Using in situ observations of aerosol size and composition as inputs to the optical properties calculations showed that using a low-resolution size bin representation (four bins) underestimates the efficiency with which aerosols scatter and absorb light (mass extinction efficiency). Besides using finer-resolution size bins (8–16 bins), it was also necessary to increase the refractive indices and hygroscopicity of select aerosol species within the range of values reported in the literature to achieve better consistency with measured values of the mass extinction efficiency (6.7 m2 g−1 observed average) and light-scattering enhancement factor (f(RH)) due to aerosol hygroscopic growth (2.2 observed average). Furthermore, an evaluation of the optical properties obtained using modeled aerosol properties revealed the inability of sectional and modal aerosol representations in WRF-Chem to properly reproduce the observed size distribution, with the models displaying a much wider accumulation mode. Other model deficiencies included an underestimate of organic aerosol density (1.0 g cm−3 in the model vs. observed average of 1.5 g cm−3) and an overprediction of the fractional contribution of submicron inorganic aerosols other than sulfate, ammonium, nitrate, chloride, and sodium corresponding to mostly dust (17 %–28 % modeled vs. 12 % estimated from observations). These results illustrate the complexity of achieving an accurate model representation of optical properties and provide potential solutions that are relevant to multiple disciplines and applications such as air quality forecasts, health impact assessments, climate projections, solar power forecasts, and aerosol data assimilation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-14
    Description: Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging to predict and attribute the specific organic compounds and sources that lead to observed OA loadings, largely due to contributions from secondary production. This is especially true for megacities surrounded by numerous regional sources that create an OA background. Here, we utilize in situ gas and aerosol observations collected on board the NASA DC-8 during the NASA–NIER KORUS-AQ (Korea–United States Air Quality) campaign to investigate the sources and hydrocarbon precursors that led to the secondary OA (SOA) production observed over Seoul. First, we investigate the contribution of transported OA to total loadings observed over Seoul by using observations over the Yellow Sea coupled to FLEXPART Lagrangian simulations. During KORUS-AQ, the average OA loading advected into Seoul was ∼1–3 µg sm−3. Second, taking this background into account, the dilution-corrected SOA concentration observed over Seoul was ∼140 µgsm-3ppmv-1 at 0.5 equivalent photochemical days. This value is at the high end of what has been observed in other megacities around the world (20–70 µgsm-3ppmv-1 at 0.5 equivalent days). For the average OA concentration observed over Seoul (13 µg sm−3), it is clear that production of SOA from locally emitted precursors is the major source in the region. The importance of local SOA production was supported by the following observations. (1) FLEXPART source contribution calculations indicate any hydrocarbons with a lifetime of less than 1 day, which are shown to dominate the observed SOA production, mainly originate from South Korea. (2) SOA correlated strongly with other secondary photochemical species, including short-lived species (formaldehyde, peroxy acetyl nitrate, sum of acyl peroxy nitrates, dihydroxytoluene, and nitrate aerosol). (3) Results from an airborne oxidation flow reactor (OFR), flown for the first time, show a factor of 4.5 increase in potential SOA concentrations over Seoul versus over the Yellow Sea, a region where background air masses that are advected into Seoul can be measured. (4) Box model simulations reproduce SOA observed over Seoul within 11 % on average and suggest that short-lived hydrocarbons (i.e., xylenes, trimethylbenzenes, and semi-volatile and intermediate-volatility compounds) were the main SOA precursors over Seoul. Toluene alone contributes 9 % of the modeled SOA over Seoul. Finally, along with these results, we use the metric ΔOA/ΔCO2 to examine the amount of OA produced per fuel consumed in a megacity, which shows less variability across the world than ΔOA∕ΔCO.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-22
    Description: An instrumented NASA P-3B aircraft was used for airborne sampling of trace gases in a plume that had emanated from a small forest understory fire in Georgia, USA. The plume was sampled at its origin to derive emission factors and followed  ∼ 13.6 km downwind to observe chemical changes during the first hour of atmospheric aging. The P-3B payload included a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), which measured non-methane organic gases (NMOGs) at unprecedented spatiotemporal resolution (10 m spatial/0.1 s temporal). Quantitative emission data are reported for CO2, CO, NO, NO2, HONO, NH3, and 16 NMOGs (formaldehyde, methanol, acetonitrile, propene, acetaldehyde, formic acid, acetone plus its isomer propanal, acetic acid plus its isomer glycolaldehyde, furan, isoprene plus isomeric pentadienes and cyclopentene, methyl vinyl ketone plus its isomers crotonaldehyde and methacrolein, methylglyoxal, hydroxy acetone plus its isomers methyl acetate and propionic acid, benzene, 2,3-butanedione, and 2-furfural) with molar emission ratios relative to CO larger than 1 ppbV ppmV−1. Formaldehyde, acetaldehyde, 2-furfural, and methanol dominated NMOG emissions. No NMOGs with more than 10 carbon atoms were observed at mixing ratios larger than 50 pptV ppmV−1 CO. Downwind plume chemistry was investigated using the observations and a 0-D photochemical box model simulation. The model was run on a nearly explicit chemical mechanism (MCM v3.3) and initialized with measured emission data. Ozone formation during the first hour of atmospheric aging was well captured by the model, with carbonyls (formaldehyde, acetaldehyde, 2,3-butanedione, methylglyoxal, 2-furfural) in addition to CO and CH4 being the main drivers of peroxy radical chemistry. The model also accurately reproduced the sequestration of NOx into peroxyacetyl nitrate (PAN) and the OH-initiated degradation of furan and 2-furfural at an average OH concentration of 7.45 ± 1.07 × 106 cm−3 in the plume. Formaldehyde, acetone/propanal, acetic acid/glycolaldehyde, and maleic acid/maleic anhydride (tentatively identified) were found to be the main NMOGs to increase during 1 h of atmospheric plume processing, with the model being unable to capture the observed increase. A mass balance analysis suggests that about 50 % of the aerosol mass formed in the downwind plume is organic in nature.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-10-07
    Description: Aerosol volume size distribution (VSD) retrievals from the Aerosol Robotic Network (AERONET) aerosol monitoring network were obtained during multiple DRAGON (Distributed Regional Aerosol Gridded Observational Network) campaigns conducted in Maryland, California, Texas and Colorado from 2011 to 2014. These VSD retrievals from the field campaigns were used to make comparisons with near-simultaneous in situ samples from aircraft profiles carried out by the NASA Langley Aerosol Group Experiment (LARGE) team as part of four campaigns comprising the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) experiments. For coincident (±1 h) measurements there were a total of 91 profile-averaged fine-mode size distributions acquired with the LARGE ultra-high sensitivity aerosol spectrometer (UHSAS) instrument matched to 153 AERONET size distributions retrieved from almucantars at 22 different ground sites. These volume size distributions were characterized by two fine-mode parameters, the radius of peak concentration (rpeak_conc) and the VSD fine-mode width (widthpeak_conc). The AERONET retrievals of these VSD fine-mode parameters, derived from ground-based almucantar sun photometer data, represent ambient humidity values while the LARGE aircraft spiral profile retrievals provide dried aerosol (relative humidity; RH 
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-27
    Description: Single-particle mass spectrometry (SPMS) instruments characterize the composition of individual aerosol particles in real time. Their fundamental ability to differentiate the externally mixed particle types that constitute the atmospheric aerosol population enables a unique perspective into sources and transformation. However, quantitative measurements by SPMS systems are inherently problematic. We introduce a new technique that combines collocated measurements of aerosol composition by SPMS and size-resolved absolute particle concentrations on aircraft platforms. Quantitative number, surface area, volume, and mass concentrations are derived for climate-relevant particle types such as mineral dust, sea salt, and biomass burning smoke. Additionally, relative ion signals are calibrated to derive mass concentrations of internally mixed sulfate and organic material that are distributed across multiple particle types. The NOAA Particle Analysis by Laser Mass Spectrometry (PALMS) instrument measures size-resolved aerosol chemical composition from aircraft. We describe the identification and quantification of nine major atmospheric particle classes, including sulfate–organic–nitrate mixtures, biomass burning, elemental carbon, sea salt, mineral dust, meteoric material, alkali salts, heavy fuel oil combustion, and a remainder class. Classes can be sub-divided as necessary based on chemical heterogeneity, accumulated secondary material during aging, or other atmospheric processing. Concentrations are derived for sizes that encompass the accumulation and coarse size modes. A statistical error analysis indicates that particle class concentrations can be determined within a few minutes for abundances above ∼10 ng m−3. Rare particle types require longer sampling times. We explore the instrumentation requirements and the limitations of the method for airborne measurements. Reducing the size resolution of the particle data increases time resolution with only a modest increase in uncertainty. The principal limiting factor to fast time response concentration measurements is statistically relevant sampling across the size range of interest, in particular, sizes D  2 µm for coarse-mode analysis. Performance is compared to other airborne and ground-based composition measurements, and examples of atmospheric mineral dust concentrations are given. The wealth of information afforded by composition-resolved size distributions for all major aerosol types represents a new and powerful tool to characterize atmospheric aerosol properties in a quantitative fashion.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-04-25
    Description: Single-particle mass spectrometer (SPMS) instruments characterize the composition of individual aerosol particles in real time. Their fundamental ability to differentiate the externally mixed particle types that constitute the atmospheric aerosol population enables a unique perspective into sources and transformation. However, quantitative measurements by SPMS systems are inherently problematic. We introduce a new technique that combines collocated measurements of aerosol composition by SPMS and size-resolved absolute particle concentrations on aircraft platforms. Quantitative number, surface area, volume, and mass concentrations are derived for climate-relevant particle types such as mineral dust, sea salt, and biomass burning smoke. Additionally, relative ion signals are calibrated to derive mass concentrations of internally mixed sulfate and organic material that are distributed across multiple particle types. The NOAA Particle Analysis by Laser Mass Spectrometry (PALMS) instrument measures size-resolved aerosol chemical composition from aircraft. We describe the identification and quantification of nine major atmospheric particle classes, including sulfate/organic/nitrate mixtures, biomass burning, elemental carbon, sea salt, mineral dust, meteoric material, alkali salts, heavy fuel oil combustion, and a remainder class. Classes can be sub-divided as necessary based on chemical heterogeneity, accumulated secondary material during aging, or other atmospheric processing. Concentrations are derived for sizes that encompass the accumulation and coarse size modes. A statistical error analysis indicates that particle class concentrations can be determined within a few minutes for abundances above ~ 10 ng m−3. Rare particle types require longer sampling times. We explore the instrumentation requirements and the limitations of the method for airborne measurements. Reducing the size resolution of the particle data increases time resolution with only a modest increase in uncertainty. The principal limiting factor to fast time response concentration measurements is statistically relevant sampling across the size range of interest, in particular, sizes D  2 μm for coarse mode analysis. We demonstrate the use of a virtual impactor to enhance sampling statistics for the inherently sparse coarse mode. Performance is compared to other airborne and ground-based composition measurements, and examples of atmospheric mineral dust concentrations are given. The wealth of information afforded by composition-resolved size distributions for all major aerosol types represents a new and powerful tool to characterize atmospheric aerosol properties in a quantitative fashion.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-08-24
    Description: Organic aerosol (OA) is an important fraction of submicron aerosols. However, it is challenging to predict and attribute the specific organic compounds and sources that lead to observed OA loadings, largely due to contributions from secondary production. This is especially true for megacities surrounded by numerous regional sources that create an OA background. Here, we utilize in-situ gas and aerosol observations collected on-board the NASA DC-8 during the NASA/NIER KORUS-AQ (KORea United States-Air Quality) campaign to investigate the sources and hydrocarbon precursors that led to the secondary OA (SOA) production observed over Seoul. First, we investigate the contribution of transported OA to total loadings observed over Seoul, by using observations over the West Sea coupled to FLEXPART Lagrangian simulations. During KORUS-AQ, the average OA loading advected into Seoul was ~1–3µgsm−3. Second, taking this background into account, the dilution-corrected SOA concentration observed over Seoul was ~140µgsm−3ppmv−1 at 0.5 equivalent photochemical days. This value is at the high end of what has been observed in other megacities around the world (20–70µgsm−3ppmv−1 at 0.5 equivalent days). For the average OA concentration observed over Seoul (13µgsm−3), it is clear that production of SOA from locally emitted precursors is the major source in the region. The importance of local SOA production was supported by the following observations: (1) FLEXPART source contribution calculations indicate any hydrocarbons with a lifetime less than 1 day, which are shown to dominate the observed SOA production, mainly originate from South Korea. (2) SOA correlated strongly with other secondary photochemical species, including short-lived species (formaldehyde, peroxy acetyl nitrate, sum of acyl peroxy nitrates, dihydroxy toluene, and nitrate aerosol). (3) Results from an airborne oxidation flow reactor (OFR), flown for the first time, show a factor of 4.5 increase in potential SOA concentrations over Seoul versus over the West Sea, a region where background air masses that are advected into Seoul can be measured. (4) Box model simulations reproduce SOA observed over Seoul within 15% on average, and suggest that short-lived hydrocarbons (i.e., xylenes, trimethylbenzenes, semi- and intermediate volatility compounds) were the main SOA precursors over Seoul. Toluene, alone, contributes 9% of the modeled SOA over Seoul. Finally, along with these results, we use the metric ΔOA/ΔCO2 to examine the amount of OA produced per fuel consumed in a megacity, which shows less variability across the world than ΔOA/ΔCO.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-04-05
    Description: Aerosol volume size distributions (VSD) retrievals from the Aerosol Robotic Network (AERONET) aerosol monitoring network were obtained during multiple DRAGON (Distributed Regional Aerosol Gridded Observational Network) conducted in Maryland, California, Texas and Colorado from 2011 to 2014 . These VSD products were used during field campaigns to make comparisons with near simultaneous in situ sampling from aircraft profiles carried out by the NASA Langley Aerosol Group Experiment (LARGE) team as part of four campaigns comprising the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) experiments. For coincident (± 1 hour) measurements there were a total of 91 profile-averaged fine mode size distributions acquired with the LARGE Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) instrument matched to 153 AERONET size distributions retrieved from almucantars at 22 different ground sites. These volume size distributions were characterized by two fine mode parameters, radius of peak concentration (rpeak_conc) and VSD fine mode width (widthfine_mode). The AERONET retrievals of these VSD fine mode parameters, derived from ground-based almucantar sun photometer data, represent ambient humidity values while the LARGE aircraft spiral profile retrievals provide dried aerosol (RH 
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-07-29
    Description: Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction throughout the aerosol size distribution. Using a core-shell mixing rule in ASP overestimates aerosol absorption, especially for the fresh biomass burning aerosol measured in ARCTAS-B, suggesting the need for modeling the time-varying mixing states of aerosols in future versions of ASP.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-04
    Description: Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA EVS-2 (Earth Venture Suborbital-2) investigation with three intensive observation periods designed to study key atmospheric processes that determine the climate impacts of these aerosols. During the Southern Hemisphere winter and spring (June–October), aerosol particles reaching 3–5 km in altitude are transported westward over the southeast Atlantic, where they interact with one of the largest subtropical stratocumulus (Sc) cloud decks in the world. The representation of these interactions in climate models remains highly uncertain in part due to a scarcity of observational constraints on aerosol and cloud properties, as well as due to the parameterized treatment of physical processes. Three ORACLES deployments by the NASA P-3 aircraft in September 2016, August 2017, and October 2018 (totaling ∼350 science flight hours), augmented by the deployment of the NASA ER-2 aircraft for remote sensing in September 2016 (totaling ∼100 science flight hours), were intended to help fill this observational gap. ORACLES focuses on three fundamental science themes centered on the climate effects of African BB aerosols: (a) direct aerosol radiative effects, (b) effects of aerosol absorption on atmospheric circulation and clouds, and (c) aerosol–cloud microphysical interactions. This paper summarizes the ORACLES science objectives, describes the project implementation, provides an overview of the flights and measurements in each deployment, and highlights the integrative modeling efforts from cloud to global scales to address science objectives. Significant new findings on the vertical structure of BB aerosol physical and chemical properties, chemical aging, cloud condensation nuclei, rain and precipitation statistics, and aerosol indirect effects are emphasized, but their detailed descriptions are the subject of separate publications. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project and the dataset it produced.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...