ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-03-01
    Description: No abstract available. doi:10.2204/iodp.sd.2.02.2006
    Print ISSN: 1816-8957
    Electronic ISSN: 1816-3459
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-09-01
    Description: No abstract available. doi:10.22 04/iodp.sd.5.03.2007
    Print ISSN: 1816-8957
    Electronic ISSN: 1816-3459
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-04-08
    Description: In anoxic environments, volatile methylated sulfides including methanethiol (MT) and dimethyl sulfide (DMS) link the pools of inorganic and organic carbon with the sulfur cycle. However, direct formation of methylated sulfides from reduction of dissolved inorganic carbon has previously not been demonstrated. During examination of the hydrogenotrophic microbial activity at different temperatures in the anoxic sediment from Lake Plußsee, DMS formation was detected at 55 °C and was enhanced when bicarbonate was supplemented. Addition of both bicarbonate and H2 resulted in the strongest stimulation of DMS production, and MT levels declined slightly. Addition of methyl-group donors such as methanol and syringic acid or methyl-group acceptors such as hydrogen sulfide did not enhance further accumulation of DMS and MT. The addition of 2-bromoethanesulfonate inhibited DMS formation and caused a slight MT accumulation. MT and DMS had average δ13C values of −55‰ and −62‰, respectively. Labeling with NaH13CO3 showed that incorporation of bicarbonate into DMS occurred through methylation of MT. H235S labeling demonstrated a microbially-mediated, but slow, process of hydrogen sulfide methylation that accounted for
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-03-19
    Description: Benthic microbial oxygen consumption rates were investigated during an IODP site survey to the South Pacific Gyre. Primary production, particle fluxes and sedimentation rates are extraordinarily low in this most oligotrophic oceanic region on earth. We studied benthic microbial respiration rates from vertical oxygen profiles in sediments obtained on different spatial scales ex situ (in piston cores and multi cores), and in situ (using a benthic lander with a microelectrode profiler). Along a transect in the area 24 to 46° S and 165 to 117° W, cores at 10 of 11 sites were oxygenated for their entire lengths (as much as 8 m below seafloor), at concentrations 〉150 μmol L−1 O2. This represents the deepest oxygen penetration ever measured in marine sediments. Microprofiles from the top sediment layer revealed a diffusive oxygen flux to the sediment in the order of 0.2 mmol m−2 d−1. This is in the lower range of previously reported fluxes for oligotrophic sediments but corresponds well to the low surface water primary production. Because of the inert nature of the deeper sediment, oxygen that is not consumed in the surface layer diffuses downward to much greater depth. In deeper zones, a small O2 flux of ~0.1 μmol m−2 d−1 was therefore still present. This flux was constant with depth, indicating extremely low respiration rates. Modeling of the measured oxygen profiles suggests that the sediment is probably oxygenated down to the basalt, indicating an oxygen flux from the sediment into the basaltic basement.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-08-07
    Description: Sediment oxygen concentration profiles and benthic microbial oxygen consumption rates were investigated during an IODP site survey in the South Pacific Gyre. Primary production, particle fluxes and sedimentation rates are extremely low in this ultra-oligotrophic oceanic region. We derived O2 consumption rates from vertical oxygen profiles in sediments obtained on different spatial scales ex situ (in piston cores and multi cores), and in situ (using a benthic lander equipped with a microelectrode profiler). Along a transect in the area 24 to 46° S and 165 to 117° W, cores from 10 out of 11 sites were oxygenated over their entire length (as much as 8 m below seafloor), with deep O2 concentrations 〉150 μmol L−1. This represents the deepest oxygen penetration ever measured in marine sediments. High-resolution microprofiles from the surface sediment layer revealed a diffusive oxygen uptake between 0.1 and 1.3 mmol m−2 d−1, equal to a carbon mineralization rate of ~0.4–4.5 gC m−2 yr−1. This is in the lower range of previously reported fluxes for oligotrophic sediments but corresponds well to the low surface water primary production. Half of the pool of reactive organic matter was consumed in the top 1.5–6 mm of the sediment. Because of the inert nature of the deeper sediment, oxygen that is not consumed within the top centimeters diffuses downward to much greater depth. In deeper zones, a small O2 flux between 0.05 and 0.3 μmol m−2 d−1 was still present. This flux was nearly constant with depth, indicating extremely low O2 consumption rates. Modeling of the oxygen profiles suggests that the sediment is probably oxygenated down to the basalt, suggesting an oxygen flux from the sediment into the basaltic basement.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-12-17
    Description: Cold-water coral ecosystems are considered hot-spots of biodiversity and biomass production and may be a regionally important contributor to carbonate production. The impact of these ecosystems on biogeochemical processes and carbonate preservation in associated sediments were studied at Røst Reef and Traenadjupet Reef, two modern (post-glacial) cold-water coral reefs on the Mid-Norwegian shelf. Sulfate and iron reduction as well as carbonate dissolution and precipitation were investigated by combining pore-water geochemical profiles, steady state modeling, as well as solid phase analyses and sulfate reduction rate measurements on gravity cores of up to 3.2 m length. Low extents of sulfate depletion and dissolved inorganic carbon (DIC) production, combined with sulfate reduction rates not exceeding 3 nmolS cm−3 d−1, suggested that overall anaerobic carbon mineralization in the sediments was low. These data showed that the coral fragment-bearing siliciclastic sediments were effectively decoupled from the productive pelagic ecosystem by the complex reef surface framework. Organic matter being mineralized by sulfate reduction was calculated to consist of 57% carbon bound in –CH2O– groups and 43% carbon in –CH2– groups. Methane concentrations were below 1 μM, and failed to support the hypothesis of a linkage between the distribution of cold-water coral reefs and the presence of hydrocarbon seepage. Iron reduction linked to microbial sulfate reduction buffered the pore-water carbonate system and inhibited acid driven coral skeleton dissolution. A large pool of reactive iron was available leading to the formation of iron sulfide minerals. Constant pore-water Ca2+, Mg2+ and Sr2+ concentrations in most cores and decreasing Ca2+ and Sr2+ concentrations with depth in core 23-18 GC indicated diagenetic carbonate precipitation. This was consistent with the excellent preservation of buried coral fragments.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-08-16
    Description: In anoxic environments, volatile methylated sulfides like methanethiol (MT) and dimethyl sulfide (DMS) link the pools of inorganic and organic carbon with the sulfur cycle. However, direct formation of methylated sulfides from reduction of dissolved inorganic carbon has previously not been demonstrated. When studying the effect of temperature on hydrogenotrophic microbial activity, we observed formation of DMS in anoxic sediment of Lake Plußsee at 55 °C. Subsequent experiments strongly suggested that the formation of DMS involves fixation of bicarbonate via a reductive pathway in analogy to methanogenesis and engages methylation of MT. DMS formation was enhanced by addition of bicarbonate and further increased when both bicarbonate and H2 were supplemented. Inhibition of DMS formation by 2-bromoethanesulfonate points to the involvement of methanogens. Compared to the accumulation of DMS, MT showed the opposite trend but there was no apparent 1:1 stoichiometric ratio between both compounds. Both DMS and MT had negative δ13C values of −62‰ and −55‰, respectively. Labeling with NaH13CO3 showed more rapid incorporation of bicarbonate into DMS than into MT. The stable carbon isotopic evidence implies that bicarbonate was fixed via a reductive pathway of methanogenesis, and the generated methyl coenzyme M became the methyl donor for MT methylation. Neither DMS nor MT accumulation were stimulated by addition of the methyl-group donors methanol and syringic acid or by the methyl-group acceptor hydrogen sulphide. The source of MT was further investigated in a H235S labeling experiment, which demonstrated a microbially-mediated process of hydrogen sulfide methylation to MT that accounted for only
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-04-27
    Description: Cold-water coral ecosystems are considered hot-spots of biodiversity and biomass production and may be a regionally important contributor to carbonate production. The impact of these ecosystems on biogeochemical processes and carbonate preservation in associated sediments were studied at Røst Reef and Traenadjupet Reef, two modern (post-glacial) cold-water coral reefs on the Mid-Norwegian shelf. Sulfate and iron reduction as well as carbonate dissolution and precipitation were investigated by combining pore-water geochemical profiles, steady state modeling, as well as solid phase analyses and sulfate reduction rate measurements on gravity cores of up to 3.25 m length. Low extents of sulfate depletion and dissolved inorganic carbon (DIC) production, combined with sulfate reduction rates not exceeding 3 nmol S cm−3 d−1, suggested that overall anaerobic carbon mineralization in the sediments was low. These data showed that the coral fragment-bearing siliciclastic sediments were effectively decoupled from the productive pelagic ecosystem by the complex reef surface framework. Organic matter being mineralized by sulfate reduction was calculated to consist of 57% carbon bound in CH2O groups and 43% carbon in -CH2- groups. Methane concentrations were below 1 μM, and failed to support the hypothesis of a linkage between the distribution of cold-water coral reefs and the presence of hydrocarbon seepage. Reductive iron oxide dissolution linked to microbial sulfate reduction buffered the pore-water carbonate system and inhibited acid-driven coral skeleton dissolution. A large pool of reactive iron was available leading to the formation of iron sulfide minerals. Constant pore-water Ca2+, Mg2+ and Sr2+ concentrations in most cores and decreasing Ca2+ and Sr2+ concentrations with depth in core 23–18 GC indicated diagenetic carbonate precipitation. This was consistent with the excellent preservation of buried coral fragments.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...