ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (2)
  • 1
    Publication Date: 2016-03-08
    Description: Extreme strain localization occurred in the centre of the cross-cutting element of a flanking structure in almost pure calcite marbles from Syros, Greece. At the maximum displacement of 120 cm along the cross-cutting element, evidence of grain size sensitive deformation mechanisms can be found in the ultramylonitic marbles, which are characterized by (1) an extremely small grain size ( ∼  3 µm), (2) grain boundary triple junctions with nearly 120° angles, (3) a weak crystallographic preferred orientation with very low texture index (J = 1.4), (4) a random misorientation angle distribution curve and (5) the presence of small cavities. Using transmission electron microscopy, a deformation sequence is observed comprising recrystallization dominantly by bulging, resulting in the development of the fine-grained ultramylonite followed by the development of a high dislocation density ( ∼  1013 m−2) with ongoing deformation of the fine-grained ultramylonite. The arrangement of dislocations in the extremely fine-grain-sized calcite differs from microstructures created by classical dislocation creep mediated by combined glide and thermally activated climb. Instead, it exhibits extensive glide and dislocation networks characteristic of recovery accommodated by cross-slip and network-assisted dislocation movement without formation of idealized subgrain walls. The enabling of grain boundary sliding to dislocation activity is deemed central to initiating and sustaining strain softening and is argued to be an important strain localization process in calcite rocks, even at a high strain rate ( ∼  10−9 s−1) and low temperature (300 °C).
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-18
    Description: Extreme strain localization occurred in the center of the cross-cutting element of a flanking structure in almost pure calcite marbles from Syros, Greece. At the maximum displacement of 120 cm along the cross-cutting element evidence of grain size sensitive deformation mechanisms can be found in the ultramylonitic marbles, which are characterized by (1) an extremely small grain size (∼3 μm), (2) grain boundary triple junctions with nearly 120° angles, (3) a weak crystallographic preferred orientation with very low texture index (J=1.4), (4) a random misorientation angle distribution curve and (5) the presence of small cavities. Using transmission electron microscopy a deformation sequence is observed comprising, first recrystallization by bulging resulting in the development of the fine-grained ultramylonite followed by the evolution of a high dislocation density (∼1013 m−2) with ongoing deformation of the fine-grained ultramylonite. The arrangement of dislocations in the extremely fine grain sized calcite differs from microstructures created by classical dislocation creep mediated by combined glide and thermally activated climb. Instead, it exhibits extensive glide and dislocation networks characteristic of recovery accommodated by cross-slip and network-assisted dislocation movement without formation of idealized subgrain walls. The enabling of grain boundary sliding to dislocation activity is deemed central to initiating and sustaining strain softening and is argued to be an important strain localization process in calcite rocks, even at high strain rate (10−9 s−1) and low temperature (300 °C).
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...