ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-01-04
    Description: The extinction spectra of laboratory generated sea salt aerosols have been measured from 1 μm to 20 μm using a Bruker 66v/S FTIR spectrometer. Concomitant measurements include temperature, pressure, relative humidity and the aerosol size distribution. The refractive indices of the sea salt have been determined using a simple harmonic oscillator band model (Thomas et al., 2004) for aerosol with relative humidities between 0.1% to 100% sea salt. The resulting refractive index spectra show significant discrepancies when compared to existing sea salt refractive indices.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-02-04
    Description: A case study to investigate the properties of inertia-gravity waves in the upper troposphere/lower stratosphere has been carried out over Northern Germany during the occurrence of an upper tropospheric jet in connection with a poleward Rossby wave breaking event from 17-19 December 1999. The investigations are based on the evaluation of continuous radar measurements with the OSWIN VHF radar at Kühlungsborn (54.1 N, 11.8 E) and the 482 MHz UHF wind profiler at Lindenberg (52.2 N, 14.1 E). Both radars are separated by about 265 km. Based on wavelet transformations of both data sets, the dominant vertical wavelengths of about 2-4 km for fixed times as well as the dominant observed periods of about 11 h and weaker oscillations with periods of  6 h for the altitude range between 5 and 8 km are comparable. Gravity wave parameters have been estimated at both locations separately and by a complex cross-spectral analysis of the data of both radars. The results show the appearance of dominating inertia-gravity waves with characteristic horizontal wavelengths of  300 km moving in the opposite direction than the mean background wind and a secondary less pronounced wave with a horizontal wavelength in the order of about 200 km moving with the wind. Temporal and spatial differences of the observed waves are discussed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-26
    Description: Stationary wave patterns in middle atmospheric ozone (O3) and water vapour (H2O) are an important factor in the atmospheric circulation, but there is a strong gap in diagnosing and understanding their configuration and origin. Based on Odin satellite data from 2001 to 2010 we investigate the stationary wave patterns in O3 and H2O as indicated by the seasonal long-term means of the zonally asymmetric components O3* = O3-[O3] and H2O* = H2O-[H2O] ([O3], [H2O]: zonal means). At mid- and polar latitudes we find a pronounced wave one pattern in both constituents. In the Northern Hemisphere, the wave patterns increase during autumn, maintain their strength during winter and decay during spring, with maximum amplitudes of about 10–20 % of the zonal mean values. During winter, the wave one in O3* shows a maximum over the North Pacific/Aleutians and a minimum over the North Atlantic/Northern Europe and a double-peak structure with enhanced amplitude in the lower and in the upper stratosphere. The wave one in H2O* extends from the lower stratosphere to the upper mesosphere with a westward shift in phase with increasing height including a jump in phase at upper stratosphere altitudes. In the Southern Hemisphere, similar wave patterns occur mainly during southern spring. By comparing the observed wave patterns in O3* and H2O* with a linear solution of a steady-state transport equation for a zonally asymmetric tracer component we find that these wave patterns are primarily due to zonally asymmetric transport by geostrophically balanced winds, which are derived from observed temperature profiles. In addition temperature-dependent photochemistry contributes substantially to the spatial structure of the wave pattern in O3* . Further influences, e.g., zonal asymmetries in eddy mixing processes, are discussed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-12
    Description: This comment paper addresses data and analysis issues in a paper entitled "Streamflow Input to Lake Athabasca, Canada" by Rasouli et al. (2013). Analyses of observed and naturalized lake level data for Lake Athabasca are redone in this comment paper with corrected hydrometric data to provide northerners and researchers with the correct information for environmental assessments. The comment paper also highlights the importance of including in the analysis not only direct inflows to Lake Athabasca, but also the hydraulic influences on lake outflow, especially when meaningful future projections of lake levels are required for water management.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-03-20
    Description: This comment paper addresses data and analysis issues in a paper entitled "Streamflow input to Lake Athabasca, Canada" by Rasouli et al. (2013). Analyses of observed and naturalized lake level data for Lake Athabasca are redone in this comment paper with corrected hydrometric data to provide northerners and researchers with the correct information for environmental assessments.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-02-04
    Description: Based on Odin satellite data 2001–2010 we investigate stationary wave patterns in middle atmospheric ozone (O3) and water vapour (H2O) as indicated by their seasonal long-term means of the zonally asymmetric components O3* = O3-[O3] and H2O* = H2O-[H2O] ([O3], [H2O]: zonal means). At mid- and polar latitudes of Northern and Southern Hemisphere, we find a pronounced wave one pattern in both constituents. In the Northern Hemisphere, the wave one patterns increase during autumn, maintain their strength during winter and decay during spring, with maximum amplitudes of about 10–20% of zonal mean values. During winter, the wave one in stratospheric O3* is characterized by a maximum over North Pacific/Aleutians and a minimum over North Atlantic/Northern Europe and by a double-peak structure with enhanced amplitude in the lower and in the upper stratosphere. The wave one in H2O* extends from lower stratosphere to upper mesosphere with a westward shift in phase with increasing height including a jump in phase at upper stratosphere altitudes. In the Southern Hemisphere, similar wave one patterns occur during southern spring when the polar vortex breaks down. Based on a simplified tracer transport approach we explain these wave patterns as a first-order result of zonal asymmetries in mean meridional transport by geostrophically balanced winds, which were derived from combined temperature profiles of Odin, and ECMWF (European Centre of Medium-Range Weather Forecasts) Reanalysis data (ERA Interim). Further influences which may contribute to the stationary wave patterns, e.g. eddy mixing processes or temperature-dependent chemistry, are discussed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-10-30
    Description: Optimal estimation retrieval is a form of non-linear regression which determines the most probable circumstances that produced a given observation, weighted against any prior knowledge of the system. This paper applies the technique to the estimation of aerosol backscatter and extinction (or lidar ratio) from two-channel Raman lidar observations. It produces results from simulated and real data consistent with existing Raman lidar analyses and additionally returns a more rigorous estimate of its uncertainties while automatically selecting an appropriate resolution without the imposition of artificial constraints. Backscatter is retrieved at the instrument's native resolution with an uncertainty between 2 and 20%. Extinction is less well constrained, retrieved at a resolution of 0.1–1 km depending on the quality of the data. The uncertainty in extinction is 〉15%, in part due to the consideration of short one-minute integrations, but is comparable to fair estimates of the error when using the standard Raman lidar technique. The retrieval is then applied to several hours of observation on 19 April 2010 of ash from the Eyjafjallajökull eruption. A highly depolarizing ash layer is found with a lidar ratio of 20–30 sr, much lower values than observed by previous studies. This potentially indicates a growth of the particles after 12–24 h within the planetary boundary layer. A lower concentration of ash within a residual layer exhibited a backscatter of 10 Mm−1 sr−1 and lidar ratio of 40 sr.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-03-13
    Description: Optimal estimation retrieval is a form of nonlinear regression which determines the most probable circumstances that produced a given observation, weighted against any prior knowledge of the system. This paper applies the technique to the estimation of aerosol backscatter and extinction (or lidar ratio) from two-channel Raman lidar observations. It produces results from simulated and real data consistent with existing Raman lidar analyses and additionally returns a more rigorous estimate of its uncertainties while automatically selecting an appropriate resolution without the imposition of artificial constraints. Backscatter is retrieved at the instrument's native resolution with an uncertainty between 2 and 20%. Extinction is less well constrained, retrieved at a resolution of 0.1–1 km depending on the quality of the data. The uncertainty in extinction is 〉 15%, in part due to the consideration of short 1 min integrations, but is comparable to fair estimates of the error when using the standard Raman lidar technique. The retrieval is then applied to several hours of observation on 19 April 2010 of ash from the Eyjafjallajökull eruption. A depolarising ash layer is found with a lidar ratio of 20–30 sr, much lower values than observed by previous studies. This potentially indicates a growth of the particles after 12–24 h within the planetary boundary layer. A lower concentration of ash within a residual layer exhibited a backscatter of 10 Mm−1 sr−1 and lidar ratio of 40 sr.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-08-05
    Description: A case study to investigate the properties of inertia-gravity waves in the upper troposphere/lower stratosphere has been carried out over Northern Germany during the occurrence of an upper tropospheric jet in connection with a poleward Rossby wave breaking event from 17-19 December 1999. The investigations are based on continuous radar measurements with the OSWIN VHF radar at Kühlungsborn (54.1° N, 11.8° E) and the 482 MHz UHF wind profiler at Lindenberg (52.2° N, 14.1° E). Both radars are separated by about 265 km. Based on wavelet transformations of both data sets, the dominant vertical wavelengths of about 2–4 km for fixed times as well as the dominant observed periods of about 11 h for the altitude range between 5 and 8 km are comparable. Gravity wave parameter have been estimated at both locations separately and by a complex cross-spectral analysis of the data of both radars. The results show the appearance of dominating inertia-gravity waves with characteristic horizontal wavelengths between 600 and 300 km moving in the opposite direction than the mean background wind and a secondary less pronounced wave with a horizontal wavelength in the order of about 200 km moving with the wind. Temporal and spatial differences of the observed waves are discussed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-11-13
    Description: A meteorological case study for the impact of inertia-gravity waves on surface meteorology is presented. The large-scale environment from 17 to 19 December 1999 was dominated by a poleward breaking Rossby wave transporting subtropical air over the North Atlantic Ocean upward and north-eastward. The synoptic situation was characterized with an upper tropospheric jet streak passing Northern Europe. The unbalanced jet spontaneously radiated inertia-gravity waves from its exit region. Near-inertial waves appeared with a horizontal wavelength of about 200 km and an apparent period of about 12 h. These waves transported energy downwards and interacted with large-scale convection. This configuration is simulated with the nonhydrostatic Fifth-Generation Mesoscale Model. Together with simplified runs without orography and moisture it is demonstrated that the imbalance of the jet (detected with the cross-stream ageostrophic wind) and the deep convection (quantified with the latent heat release) are forcing inertia-gravity waves. This interaction is especially pronounced when the upper tropospheric jet is located above a cold front at the surface and supports deep frontal convection. Weak indication was found for triggering post-frontal convection by inertia-gravity waves. The realism of model simulations was studied in an extended validation study for the Baltic Sea region. It included observations from radar (DWDPI, BALTRAD), satellite (GFZGPS), weather stations (DWDMI) and assimilated products (ELDAS, MESAN). The detected spatio-temporal patterns show wind pulsations and precipitation events at scales corresponding to those of inertia-gravity waves. In particular, the robust features of strong wind and enhanced precipitation near the front appeared with nearly the same amplitudes as in the model. In some datasets we found indication for periodic variations in the post-frontal region. These findings demonstrate the impact of upper tropospheric jet-generated inertia-gravity waves on the dynamics of the boundary layer. It also gives confidence to models, observations and assimilation products for covering such processes. In an application for the Gotland Basin in the Baltic Sea, the implications of such mesoscale events on air-sea interaction and energy and water budgets are discussed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...