ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (12)
Collection
Years
  • 1
    Publication Date: 2008-05-20
    Description: In springtime, the polar marine boundary layer exhibits drastic ozone depletion events (ODEs), associated with elevated bromine oxide (BrO) mixing ratios. The current interpretation of this peculiar chemistry requires the existence of acid and bromide-enriched surfaces to heterogeneously promote and sustain ODEs. In a recent study, Sander et al. (2006) have proposed that calcium carbonate (CaCO3) precipitation in any seawater-derived medium could potentially decrease its alkalinity, making it easier for atmospheric acids such as HNO3 and H2SO4 to acidify it. We performed simulations using the state-of-the-art FREZCHEM model, capable of handling concentrated electrolyte solutions, to check the preliminary results of Sander et al. (2006). We show that the alkalinity of brine is indeed reduced to about half and a third of the initial alkalinity of seawater, at 263 K and 253 K, respectively. Such levels of alkalinity depletion have been shown to speed-up the onset of ODEs (Sander et al., 2006; Piot and von Glasow, 2008a), suggesting that carbonate precipitation could well be a key phenomenon linked with ODEs, in polar regions but also in other cold areas, such as altitude salt lakes. In addition, the evolution of the Cl/Br ratio in the brine during freezing was computed using FREZCHEM, taking into account Br substitutions in Cl–containing salts.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-12-11
    Description: In springtime, the polar marine boundary layer exhibits drastic ozone depletion events (ODEs), associated with elevated bromine oxide (BrO) mixing ratios. The current interpretation of this peculiar chemistry requires the existence of acid and bromide-enriched surfaces to heterogeneously promote and sustain ODEs. Sander et al. (2006) have proposed that calcium carbonate (CaCO3) precipitation in any seawater-derived medium could potentially decrease its alkalinity, making it easier for atmospheric acids such as HNO3 and H2SO4 to acidify it. We performed simulations using the state-of-the-art FREZCHEM model, capable of handling the thermodynamics of concentrated electrolyte solutions, to try to reproduce their results, and found that when ikaite (CaCO3·6H2O) rather than calcite (CaCO3) precipitates, there is no such effect on alkalinity. Given that ikaite has recently been identified in Antarctic brines (Dieckmann et al., 2008), our results show that great caution should be exercised when using the results of Sander et al. (2006), and reveal the urgent need of laboratory investigations on the actual link(s) between bromine activation and the pH of the surfaces on which it is supposed to take place at subzero temperature. In addition, the evolution of the Cl/Br ratio in the brine during freezing was computed using FREZCHEM, taking into account Br substitutions in Cl–containing salts.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-08-31
    Description: Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical oceanography. The other two salinity variables provide alternative measures of the mass fraction of dissolved material in seawater. "Solution Salinity", denoted SAsoln, is the most obvious extension of Reference Salinity to allow for composition anomalies; it provides a direct estimate of the mass fraction of dissolved material in solution. "Added-Mass Salinity", denoted SAadd, is motivated by a method used to report laboratory experiments; it represents the component of dissolved material added to Standard Seawater in terms of the mass of material before it enters solution. We also discuss a constructed conservative variable referred to as "Preformed Salinity", denoted S*, which will be useful in process-oriented numerical modelling studies. Finally, a conceptual framework for the incorporation of composition anomalies in numerical models is presented that builds from studies in which composition anomalies are simply ignored up to studies in which the influences of composition anomalies are accounted for using the results of biogeochemical models. 1TEOS-10: international thermodynamic equation of seawater 2010, http://www.teos-10.org.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-07-21
    Description: At the present time, little is known about how broad salinity and temperature ranges are for seawater thermodynamic models that are functions of absolute salinity (SA), temperature (T) and pressure (P). Such models rely on fixed compositional ratios of the major components (e.g., Na/Cl, Mg/Cl, Ca/Cl, SO4/Cl, etc.). As seawater evaporates or freezes, solid phases [e.g., CaCO3(s) or CaSO42H2O(s)] will eventually precipitate. This will change the compositional ratios, and these salinity models will no longer be applicable. A future complicating factor is the lowering of seawater pH as the atmospheric partial pressures of CO2 increase. A geochemical model (FREZCHEM) was used to quantify the SA−T boundaries at P=0.1 MPa and the range of these boundaries for future atmospheric CO2 increases. An omega supersaturation model for CaCO3 minerals based on pseudo-homogeneous nucleation was extended from 25–40°C to 3°C. CaCO3 minerals were the boundary defining minerals (first to precipitate) between 3°C (at SA=104 g kg−) and 40°C (at SA=66 g kg−). At 2.82°C, calcite(CaCO3) transitioned to ikaite(CaCO36H2O) as the dominant boundary defining mineral for colder temperatures, which culminated in a low temperature boundary of −4.93°C. Increasing atmospheric CO2 from 385 μatm (390 MPa) (in Year 2008) to 550 μatm (557 MPa) (in Year 2100) would increase the SA and t boundaries as much as 11 g kg−1 and 0.66°C, respectively. The model-calculated calcite-ikaite transition temperature of 2.82°C is in excellent agreement with ikaite formation in natural environments that occurs at temperatures of 3°C or lower. Furthermore, these results provide a quantitative theoretical explanation (FREZCHEM model calculation) for why ikaite is the solid phase CaCO3 mineral that precipitates during seawater freezing.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-03-15
    Description: The SCOR/IAPSO1 Working Group 127 on Thermodynamics and Equation of State of Seawater has prepared recommendations for new methods and algorithms for numerical estimation of the thermophysical properties of seawater. As an outcome of this work, a new International Thermodynamic Equation of Seawater (TEOS-10) was endorsed by IOC/UNESCO2 in June 2009 as the official replacement and extension of the 1980 International Equation of State, EOS-80. As part of this new standard a source code package has been prepared that is now made freely available to users via the World Wide Web. This package includes two libraries referred to as the SIA (Sea-Ice-Air) library and the GSW (Gibbs SeaWater) library. Information on the GSW library may be found on the TEOS-10 web site (http://www.TEOS-10.org). This publication provides an introduction to the SIA library which contains routines to calculate various thermodynamic properties as discussed in the companion paper. The SIA library is very comprehensive, including routines to deal with fluid water, ice, seawater and humid air as well as equilibrium states involving various combinations of these, with equivalent code developed in different languages. The code is hierachically structured in modules that support (i) almost unlimited extension with respect to additional properties or relations, (ii) an extraction of self-contained sub-libraries, (iii) separate updating of the empirical thermodynamic potentials, and (iv) code verification on different platforms and between different languages. Error trapping is implemented to identify when one or more of the primary routines are accessed significantly beyond their established range of validity. The initial version of the SIA library is available in Visual Basic and FORTRAN as a supplement to this publication and updates will be maintained on the TEOS-10 web site. 1 SCOR/IAPSO: Scientific Committee on Oceanic Research/International Association for the Physical Sciences of the Oceans 2 IOC/UNESCO: Intergovernmental Oceanographic Commission/United Nations Educational, Scientific and Cultural Organization
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-01-06
    Description: Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical oceanography. The other two salinity variables provide alternative measures of the mass fraction of dissolved material in seawater. "Solution Salinity", denoted SAsoln, is the most obvious extension of Reference Salinity to allow for composition anomalies; it provides a direct estimate of the mass fraction of dissolved material in solution. "Added-Mass Salinity", denoted SAadd, is motivated by a method used to report laboratory experiments; it represents the component of dissolved material added to Standard Seawater in terms of the mass of material before it enters solution. We also discuss a constructed conservative variable referred to as "Preformed Salinity", denoted S∗, which will be useful in process-oriented numerical modelling studies. Finally, a conceptual framework for the incorporation of composition anomalies in numerical models is presented that builds from studies in which composition anomalies are simply ignored up to studies in which the influences of composition anomalies are accounted for using the results of biogeochemical models. 1TEOS-10: international Thermodynamic Equation of Seawater 2010, http://www.teos-10.org/.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-03-15
    Description: A new seawater standard referred to as the International Thermodynamic Equation of Seawater 2010 (TEOS-10) was adopted in June 2009 by UNESCO/IOC on its 25th General Assembly in Paris, as recommended by the SCOR/IAPSO Working Group 127 (WG127) on Thermodynamics and Equation of State of Seawater. To support the adoption process, WG127 has developed a comprehensive source code library for the thermodynamic properties of liquid water, water vapour, ice, seawater and humid air, referred to as the Sea-Ice-Air (SIA) library. Here we present the background information and equations required for the determination of the properties of single phases and components as well as of phase transitions and composite systems as implemented in the library. All results are based on rigorous mathematical methods applied to the Primary Standards of the constituents, formulated as empirical thermodynamic potential functions and, except for humid air, endorsed as Releases of the International Association for the Properties of Water and Steam (IAPWS). Details of the implementation in the TEOS-10 SIA library are given in a companion paper.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-07-16
    Description: The SCOR/IAPSO1 Working Group 127 on Thermodynamics and Equation of State of Seawater has prepared recommendations for new methods and algorithms for numerical estimation of the the thermophysical properties of seawater. As an outcome of this work, a new International Thermodynamic Equation of Seawater (TEOS–10) was endorsed by IOC/UNESCO2 in June 2009 as the official replacement and extension of the 1980 International Equation of State, EOS-80. As part of this new standard a source code package has been prepared that is now made freely available to users via the World Wide Web. This package includes two libraries referred to as the SIA (Sea-Ice-Air) library and the GSW (Gibbs SeaWater) library. Information on the GSW library may be found on the TEOS-10 web site (http://www.TEOS-10.org). This publication provides an introduction to the SIA library which contains routines to calculate various thermodynamic properties as discussed in the companion paper. The SIA library is very comprehensive, including routines to deal with fluid water, ice, seawater and humid air as well as equilibrium states involving various combinations of these, with equivalent code developed in different languages. The code is hierachically structured in modules that support (i) almost unlimited extension with respect to additional properties or relations, (ii) an extraction of self-contained sub-libraries, (iii) separate updating of the empirical thermodynamic potentials, and (iv) code verification on different platforms and between different languages. Error trapping is implemented to identify when one or more of the primary routines are accessed significantly beyond their established range of validity. The initial version of the SIA library is available in Visual Basic and FORTRAN as a supplement to this publication and updates will be maintained on the TEOS-10 web site. 1SCOR/IAPSO: Scientific Committee on Oceanic Research/International Association for the Physical Sciences of the Oceans 2IOC/UNESCO: Intergovernmental Oceanographic Commission/United Nations Educational, Scientific and Cultural Organization
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-01-28
    Description: At the present time, little is known about how broad salinity and temperature ranges are for seawater thermodynamic models that are functions of absolute salinity (SA), temperature (T) and pressure (P). Such models rely on fixed compositional ratios of the major components (e.g. Na/Cl, Mg/Cl, Ca/Cl, SO4/Cl, etc.). As seawater evaporates or freezes, solid phases (e.g. CaCO3(s) or CaSO42H2O(s)) will eventually precipitate. This will change the compositional ratios, and these salinity models will no longer be applicable. A future complicating factor is the lowering of seawater pH as the atmospheric concentrations of CO2 increase. A geochemical model (FREZCHEM) was used to quantify the SA-T boundaries at P=0.1 MPa and the range of these boundaries for future atmospheric CO2 increases. An omega supersaturation model for CaCO3 minerals based on homogeneous nucleation was extended from 25–40°C to 3°C. CaCO3 minerals were the boundary defining minerals (first to precipitate) between 3°C (at SA=104 g kg-1 and 40°C (at SA=66 g kg-1. At 2.82°C, calcite(CaCO3) transitioned to ikaite(CaCO36H2O) as the dominant boundary defining mineral for colder temperatures, which culminated in a low temperature boundary of −4.93°C. Increasing atmospheric CO2 from 385 μatm (in Year 2008) to 550 μatm (in Year 2100) would increase the SA and t boundaries as much as 11 g kg−1 and 0.66°C, respectively. The model-calculated calcite-ikaite transition temperature of 2.82°C is in excellent agreement with ikaite formation in natural environments that occurs at temperatures of 3°C or lower. Furthermore, these results provide a quantitative theoretical explanation (FREZCHEM model calculations) for why ikaite is the solid phase CaCO3 mineral that precipitates during seawater freezing.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-11-18
    Description: While the thermodynamic properties of Standard Seawater are very well known, the quantitative effect of sea salt composition anomalies on various properties is difficult to estimate since comprehensive lab experiments with the various natural waters are scarce. Coastal and estuarine waters exhibit significant anomalies which also influence to an unknown amount the routine salinity calculation from conductivity measurements. Recent numerical models of multi-component aqueous electrolytes permit the simulation of physical chemical properties of seawater with variable solute composition. In this paper, the FREZCHEM model is used to derive a Gibbs function for Baltic seawater, and the LSEA_DELS model to provide estimates for the conductivity anomaly relative to Standard Seawater. From additional information such as direct density measurements or empirical salinity anomaly parameterisation, the quantitative deviations of properties between Baltic and Standard Seawater are calculated as functions of salinity and temperature. While several quantities show anomalies that are comparable with their measurement uncertainties and do not demand special improvement, others exhibit more significant deviations from Standard Seawater properties. In particular density and sound speed turn out to be significantly sensitive to the presence of anomalous solute. Suitable general correction methods are suggested to be applied to Baltic Sea samples with known Practical Salinity and, optionally, directly determined density.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...