ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (3)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-05-15
    Description: This study compares the distribution of bulk soil organic carbon (SOC), its fractions (unprotected and physically, chemically, and biochemically protected), available phosphorus (Pavail), organic nitrogen (Norg), and stable isotope (δ15N and δ13C) signatures at four soil depths (0–10, 10–20, 20–30, and 30–40 cm) between a nearby open forest reference area and a historical olive orchard (established in 1856) located in southern Spain. In addition, these soil properties, as well as water stable aggregates (Wsagg), were contrasted at eroding and deposition areas within the olive orchard, previously determined using 137Cs. SOC stock in the olive orchard (about 40 t C ha−1) was only 25 % of that in the forested area (about 160 t C ha−1) in the upper 40 cm of soil, and the reduction was especially severe in the unprotected organic carbon. The reference and the orchard soils also showed significant differences in the δ13C and δ15N signals, likely due to the different vegetation composition and N dynamics in both areas. Soil properties along a catena, from erosion to deposition areas within the old olive orchard, showed large differences. Soil Corg, Pavail and Norg content, and δ15N at the deposition were significantly higher than those of the erosion area, defining two distinct areas with a different soil quality status. These overall results indicate that the proper understanding of Corg content and soil quality in olive orchards requires the consideration of the spatial variability induced by erosion–deposition processes for a convenient appraisal at the farm scale.
    Print ISSN: 2199-3971
    Electronic ISSN: 2199-398X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-04
    Description: The classical approach of using 137Cs as a soil erosion tracer is based on the comparison between stable reference sites and sites affected by soil redistribution processes; it enables the derivation of soil erosion and deposition rates. The method is associated with potentially large sources of uncertainty with major parts of this uncertainty being associated with the selection of the reference sites. We propose a decision support tool to Check the Suitability of reference Sites (CheSS). Commonly, the variation among 137Cs inventories of spatial replicate reference samples is taken as the sole criterion to decide on the suitability of a reference inventory. Here we propose an extension of this procedure using a repeated sampling approach, in which the reference sites are resampled after a certain time period. Suitable reference sites are expected to present no significant temporal variation in their decay-corrected 137Cs depth profiles. Possible causes of variation are assessed by a decision tree. More specifically, the decision tree tests for (i) uncertainty connected to small-scale variability in 137Cs due to its heterogeneous initial fallout (such as in areas affected by the Chernobyl fallout), (ii) signs of erosion or deposition processes and (iii) artefacts due to the collection, preparation and measurement of the samples; (iv) finally, if none of the above can be assigned, this variation might be attributed to turbation processes (e.g. bioturbation, cryoturbation and mechanical turbation, such as avalanches or rockfalls). CheSS was exemplarily applied in one Swiss alpine valley where the apparent temporal variability called into question the suitability of the selected reference sites. In general we suggest the application of CheSS as a first step towards a comprehensible approach to test for the suitability of reference sites.
    Print ISSN: 2199-3971
    Electronic ISSN: 2199-398X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-15
    Description: As sediment loads impact freshwater systems and infrastructure, their origin in complex landscape systems is of crucial importance for sustainable management of agricultural catchments. We differentiated the sediment source contribution to a lowland river in central Switzerland by using compound-specific isotope analysis (CSIA). We found a clear distinction of sediment sources originating from forest and agricultural land use. Our results demonstrate that it is possible to reduce the uncertainty of sediment source attribution in: (i) using compound content (in our case, long-chain fatty acids; FAs) rather than soil organic matter content to transfer δ13C signal of FAs to soil contribution and (ii) restricting the investigation to the long-chain FAs (〉 C22 : 0) not to introduce errors due to aquatic contributions from algae and microorganisms. Results showed unambiguously that during base flow, agricultural land contributed up to 65 % of the suspended sediments, while forest was the dominant sediment source during high flow. This indicates that connectivity of sediment source areas within the river changes between base and high flow conditions. Uncertainty, which might occur in complex, large-scale studies due to undetected source attribution and/or CSSI signature degradation, is low because of limited data complexity in our study (i.e., two–three sources and two tracers). Our findings are the first published results highlighting (i) significant differences in compound-specific stable isotope (CSSI) signature of sediment sources from land uses dominated by C3 plant cultivation and (ii) the use of these differences to quantify sediment contribution to a small river.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...