ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-05-17
    Description: In order to estimate the rainfall fields over an entire basin raingauge, pointwise measurements need to be interpolated and the small-scale variability of rainfall fields can lead to biases in the rain rate estimation over an entire basin, above all for small or medium size mountainous and urban catchments. For these reasons, several raingauges should be installed in different places in order to determine the spatial rainfall distribution during the evolution of the natural phenomena over the selected area. In technical applications, many empirical relations are used in order to deduce heavy areal rainfall, when just one raingauge is available. In this work, we studied the areal reduction factor (ARF) using radar reflectivity maps collected with the Polar 55C, a C-band Doppler dual polarized coherent weather radar with polarization agility and with a 0.9° beamwidth. The radar rainfall estimates, for an area of 1 km2, were integrated for heavy rainfall with an upscaling process, until we had rainfall estimate for an area of 900 km2. The results obtained for a significant amount of data by using this technique are compared with the most important relations of the areal reduction factor reported in the literature.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-02-16
    Description: An operative methodology for rainfall thresholds definition is illustrated, in order to provide at critical river section optimal flood warnings. Threshold overcoming could produce a critical situation in river sites exposed to alluvial risk and trigger the prevention and emergency system alert. The procedure for the definition of critical rainfall threshold values is based both on the quantitative precipitation observed and the hydrological response of the basin. Thresholds values specify the precipitation amount for a given duration that generates a critical discharge in a given cross section and are estimated by hydrological modelling for several scenarios (e.g.: modifying the soil moisture conditions). Some preliminary results, in terms of reliability analysis (presence of false alarms and missed alarms, evaluated using indicators like hit rate and false alarm rate) for the case study of Mignone River are presented.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-11
    Description: The need of understanding and modelling the space-time variability of natural processes in hydrological sciences produced a large body of literature over the last thirty years. In this context, multifractal framework provides parsimonious models which can be applied to a wide scale range of hydrological processes, and are based on the empirical detection of some patterns in observational data, i.e. a scale invariant mechanism repeating scale after scale. Hence, multifractal analyses heavily rely on available data series and their statistical processing. In such analyses, high order moments are often estimated and used in model identification and fitting as if they were reliable. This paper warns practitioners for blind use in geophysical time series analyses of classical statistics, which is based upon independent samples typically following distributions of exponential type. Indeed, the study of natural processes reveals scaling behaviours in state (departure from exponential distribution tails) and in time (departure from independence), thus implying dramatic increase of bias and uncertainty in statistical estimation. Surprisingly, all these differences are commonly unaccounted for in most multifractal analyses of hydrological processes, which may result in inappropriate modelling, wrong inferences and false claims about the properties of the processes studied. Using theoretical reasoning and Monte Carlo simulations we find that the reliability of multifractal methods that use high order moments (〉 3) is questionable. In particular, we suggest to use the first two moments in all problems as they suffice to define the most important characteristics of the distribution.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-17
    Description: The need of understanding and modelling the space–time variability of natural processes in hydrological sciences produced a large body of literature over the last thirty years. In this context, a multifractal framework provides parsimonious models which can be applied to a wide-scale range of hydrological processes, and are based on the empirical detection of some patterns in observational data, i.e. a scale invariant mechanism repeating scale after scale. Hence, multifractal analyses heavily rely on available data series and their statistical processing. In such analyses, high order moments are often estimated and used in model identification and fitting as if they were reliable. This paper warns practitioners against the blind use in geophysical time series analyses of classical statistics, which is based upon independent samples typically following distributions of exponential type. Indeed, the study of natural processes reveals scaling behaviours in state (departure from exponential distribution tails) and in time (departure from independence), thus implying dramatic increase of bias and uncertainty in statistical estimation. Surprisingly, all these differences are commonly unaccounted for in most multifractal analyses of hydrological processes, which may result in inappropriate modelling, wrong inferences and false claims about the properties of the processes studied. Using theoretical reasoning and Monte Carlo simulations, we find that the reliability of multifractal methods that use high order moments (〉3) is questionable. In particular, we suggest that, because of estimation problems, the use of moments of order higher than two should be avoided, either in justifying or fitting models. Nonetheless, in most problems the first two moments provide enough information for the most important characteristics of the distribution.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-02-16
    Description: Conventional radars, used for atmospheric remote sensing, usually operate at a single polarization and frequency to estimate storm parameters such as rainfallrate and water content. Because of the high variability of the drop size distribution conventional radars do not succeed in obtaining detailed information because they just use horizontal reflectivity. The potentiality of the dual-polarized weather radar is investigated, in order to reject the ground-clutter, using differential reflectivity. In this light, a radar meteorology campaign was conducted over the city of Rome (Italy), collecting measurements by the polarimetric Doppler radar Polar 55C and by a raingauge network. The goodness of the results is tested by comparison of radar rainfall estimates with raingauges rainfall measurements.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...