ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-01-10
    Description: In an earlier study of troposphere-to-stratosphere transport (TST) via the tropical tropopause layer (TTL), we found that the vast majority of air parcels undergoing TST from the base of the TTL enter the extratropical lowermost stratosphere quasi-horizontally and show little or no regional preference with regards to origin in the TTL or entry into the stratosphere. We have since repeated the trajectory calculations - originally limited to a single northern hemisphere winter period - in a variety of months and years to assess how robust our earlier findings are to change of timing. To first order, we find that the main conclusions hold, irrespective of the season, year and phase of the El Niño Southern Oscillation (ENSO). We also explore: the distribution of TST between the northern and southern hemispheres; the sensitivity of modelled TST to the definition of the tropopause; and the routes by which air parcels undergo transport exclusively to the stratospheric overworld. Subject to a dynamical definition of the tropopause, we identify a strong bias towards TST in the southern hemisphere, particularly during the northern hemisphere summer. The main difference on switching to the World Meteorological Organization's thermal tropopause definition is that much less TST is modelled in the subtropics and, relative to the dynamical definition, we calculate significantly less transport into the extratropical lowermost stratosphere (ELS) – an important region with regards to ozone chemistry. In contrast to the rather homogeneous nature of TST into the ELS, we find that transport to the overworld takes place from relatively well-defined regions of the TTL, predominantly above the West Pacific and Indonesia, except for an El Niño period in which most transport takes place from regions above the East Pacific and South America.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-07-10
    Description: In an earlier study of troposphere-to-stratosphere transport (TST) via the tropical tropopause layer (TTL), we found that the vast majority of air parcels undergoing TST from the base of the TTL enter the extratropical lowermost stratosphere quasi-horizontally and show little or no regional preference with regards to origin in the TTL or entry into the stratosphere. We have since repeated the trajectory calculations – originally limited to a single Northern Hemisphere winter period – in a variety of months and years to assess how robust our earlier findings are to change of timing. To first order, we find that the main conclusions hold, irrespective of the season, year and phase of the El Niño Southern Oscillation (ENSO). We also explore: the distribution of TST between the Northern and Southern Hemispheres; the sensitivity of modelled TST to the definition of the tropopause; and the routes by which air parcels undergo transport exclusively to the stratospheric overworld. Subject to a dynamical definition of the tropopause, we identify a strong bias towards TST in the Southern Hemisphere, particularly during the Northern Hemisphere summer. The thermal tropopause, defined according to the World Meteorological Organization, lies above the dynamical tropopause throughout the extratropics. Inevitably, on switching to the thermal definition, we calculate much less transport across the tropopause, particularly in the subtropics, which could be important with regards to interpretation of processes affecting ozone chemistry in the extratropical lowermost stratosphere (ELS). In contrast to the rather homogeneous nature of TST into the ELS, we find that transport to the overworld takes place from relatively well-defined regions of the TTL, predominantly above the West Pacific and Indonesia, except for an El Niño period in which most transport takes place from regions above the East Pacific and South America.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-04
    Description: Earth system models are increasing in complexity and incorporating more processes than their predecessors, making them important tools for studying the global carbon cycle. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes, with coupled climate-carbon cycle models that represent land-use change simulating total land carbon stores by 2100 that vary by as much as 600 Pg C given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous model evaluation methodologies. Here we assess the state-of-the-art with respect to evaluation of Earth system models, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeo data and (ii) metrics for evaluation, and discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute towards the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but it is also a challenge, as more knowledge about data uncertainties is required in order to determine robust evaluation methodologies that move the field of ESM evaluation from "beauty contest" toward the development of useful constraints on model behaviour.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-07
    Description: This study explores our ability to simulate the atmospheric chemistry stemming from isoprene emissions in pristine and polluted regions of the Amazon basin. We confront two atmospheric chemistry models – a global, Eulerian chemistry-climate model (UM-UKCA) and a trajectory-based Lagrangian model (CiTTyCAT) – with recent airborne measurements of atmospheric composition above the Amazon made during the SAMBBA campaign of 2012. The simulations with the two models prove relatively insensitive to the chemical mechanism employed; we explore one based on the Mainz Isoprene Mechanism, and an updated one that includes changes to the chemistry of first generation isoprene nitrates (ISON) and the regeneration of hydroxyl radicals via the formation of hydroperoxy-aldehydes (HPALDS) from hydroperoxy radicals (ISO2). In the Lagrangian model, the impact of increasing the spatial resolution of trace gas emissions employed from 3.75° × 2.5° to 0.1° × 0.1° varies from one flight to another, and from one chemical species to another. What consistently proves highly influential on our simulations, however, is the model framework itself – how the treatment of transport, and consequently mixing, differs between the two models. The lack of explicit mixing in the Lagrangian model yields variability in atmospheric composition more reminiscent of that exhibited by the measurements. In contrast, the combination of explicit (and implicit) mixing in the Eulerian model removes much of this variability but yields better agreement with the measurements overall. We therefore explore a simple treatment of mixing in the Lagrangian model that, drawing on output from the Eulerian model, offers a compromise between the two models. We use this Lagrangian/Eulerian combination, in addition to the separate Eulerian and Lagrangian models, to simulate ozone at a site in the boundary layer downwind of Manaus, Brazil. The Lagrangian/Eulerian combination predicts a value for an AOT40-like accumulated exposure metric of around 1000 ppbv h, compared to just 20 ppbv h with the Eulerian model. The model framework therefore has considerable bearing on our understanding of the frequency at which, and the duration for which, the rainforest is exposed to damaging ground-level ozone concentrations.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-25
    Description: The Amazon basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultrahigh resolution mass spectrometry (UHR-MS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g., Kendrick Mass Defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen and/or sulfur containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene derived organo sulfate (IEPOX-OS) was found as the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic-biogenic origin. The presence of oxidised aromatic and nitroaromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from wet. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from forest but also by biomass burning and potentially other anthropogenic emissions from the neighboring urban environments.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-16
    Description: Earth system models (ESMs) are increasing in complexity by incorporating more processes than their predecessors, making them potentially important tools for studying the evolution of climate and associated biogeochemical cycles. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes. For example, coupled climate–carbon cycle models that represent land-use change simulate total land carbon stores at 2100 that vary by as much as 600 Pg C, given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous methods of model evaluation. Here we assess the state-of-the-art in evaluation of ESMs, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeodata and (ii) metrics for evaluation. We note that the practice of averaging results from many models is unreliable and no substitute for proper evaluation of individual models. We discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute to the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but also presents a challenge. Improved knowledge of data uncertainties is still necessary to move the field of ESM evaluation away from a "beauty contest" towards the development of useful constraints on model outcomes.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...