ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-11-10
    Description: The degree of non-linearity in DMS-cloud-climate interactions is assessed using the ECHAM5-HAMMOZ model by taking into account end-to-end aerosol chemistry-cloud microphysics link. The evaluation is made over the Southern oceans in austral summer, a region of minimal anthropogenic influence. In this study, we compare the DMS-derived changes in the aerosol and cloud microphysical properties between a baseline simulation with the ocean DMS emissions from a prescribed climatology, and a scenario where the DMS emissions are doubled. Our results show that doubling the DMS emissions in the current climate results in a non-linear response in atmospheric DMS burden and subsequently, in SO2 and H2SO4 burdens due to inadequate OH oxidation. The aerosol optical depth increases by only ~20 % in the 30° S–75° S belt in the SH summer months. This increases the vertically integrated cloud droplet number concentrations (CDNC) by 25 %. Since the vertically integrated liquid water vapor is constant in our model simulations, an increase in CDNC leads to a reduction in cloud droplet radius of 3.4 % over the Southern oceans in summer. The equivalent increase in cloud liquid water path is 10.7 %. The above changes in cloud microphysical properties result in a change in global annual mean radiative forcing at the TOA of −1.4 W m−2. The results suggest that the DMS-cloud microphysics link is highly non-linear. This has implications for future studies investigating the DMS-cloud climate feedbacks in a warming world and for studies evaluating geoengineering options to counteract warming by modulating low level marine clouds.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-08-10
    Description: The contribution of ocean dimethyl sulfide (DMS) emissions to changes in cloud microphysical properties is quantified seasonally and globally for present day climate conditions using an aerosol-chemistry-climate general circulation model, ECHAM5-HAMMOZ, coupled to a cloud microphysics scheme. We evaluate DMS aerosol-cloud-climate linkages over the southern oceans where anthropogenic influence is minimal. The changes in the number of activated particles, cloud droplet number concentration (CDNC), cloud droplet effective radius, cloud cover and the radiative forcing are examined by analyzing two simulations: a baseline simulation with ocean DMS emissions derived from a prescribed climatology and one in which the ocean DMS emissions are switched off. Our simulations show that the model realistically simulates the seasonality in the number of activated particles and CDNC, peaking during Southern Hemisphere (SH) summer coincident with increased phytoplankton blooms and gradually declining with a minimum in SH winter. In comparison to a simulation with no DMS, the CDNC level over the southern oceans is 128% larger in the baseline simulation averaged over the austral summer months. Our results also show an increased number of smaller sized cloud droplets during this period. We estimate a maximum decrease of up to 15–18% in the droplet radius and a mean increase in cloud cover by around 2.5% over the southern oceans during SH summer in the simulation with ocean DMS compared to when the DMS emissions are switched off. The global annual mean top of the atmosphere DMS aerosol all sky radiative forcing is −2.03 W/m2, whereas, over the southern oceans during SH summer, the mean DMS aerosol radiative forcing reaches −9.32 W/m2.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-09-28
    Description: The proposed strong positive relationship between dimethylsulphide (DMS) concentration and the solar radiation dose (SRD) received into the surface ocean is tested using data from the Atlantic Meridional Transect (AMT) programme. In situ, daily data sampled concurrently with DMS concentrations is used for the component variables of the SRD (mixed layer depth, MLD, surface insolation, I0, and a light attenuation coefficient, k) to calculate SRDinsitu. This is the first time in situ data for all of the components, including k, has been used to test the SRD-DMS relationship over large spatial scales. We find a significant correlation (ρ=0.55 n=65 p
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-02-12
    Description: There is ongoing debate over whether Arctic sea ice has already passed a "tipping point", or whether it will do so in the future. Several recent studies argue that the loss of summer sea ice does not involve an irreversible bifurcation, because it is highly reversible in models. However, a broader definition of a "tipping point" also includes other abrupt, non-linear changes that are neither bifurcations nor necessarily irreversible. Examination of satellite data for Arctic sea-ice area reveals an abrupt increase in the amplitude of seasonal variability in 2007 that has persisted since then. We identified this abrupt transition using recently developed methods that can detect multi-modality in time-series data and sometimes forewarn of bifurcations. When removing the mean seasonal cycle (up to 2008) from the satellite data, the residual sea-ice fluctuations switch from uni-modal to multi-modal behaviour around 2007. We originally interpreted this as a bifurcation in which a new lower ice cover attractor appears in deseasonalised fluctuations and is sampled in every summer–autumn from 2007 onwards. However, this interpretation is clearly sensitive to how the seasonal cycle is removed from the raw data, and to the presence of continental land masses restricting winter–spring ice fluctuations. Furthermore, there was no robust early warning signal of critical slowing down prior to the hypothesized bifurcation. Early warning indicators do however show destabilization of the summer–autumn sea-ice cover since 2007. Thus, the bifurcation hypothesis lacks consistent support, but there was an abrupt and persistent increase in the amplitude of the seasonal cycle of Arctic sea-ice cover in 2007, which we describe as a (non-bifurcation) "tipping point". Our statistical methods detect this "tipping point" and its time of onset. We discuss potential geophysical mechanisms behind it, which should be the subject of further work with process-based models.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-18
    Description: There is ongoing debate over whether Arctic sea-ice has already passed a "tipping point", or whether it will do so in future, with several recent studies arguing that the loss of summer sea ice does not involve a bifurcation because it is highly reversible in models. Recently developed methods can detect and sometimes forewarn of bifurcations in time-series data, hence we applied them to satellite data for Arctic sea-ice cover. Here we show that a new low ice cover state has appeared from 2007 onwards, which is distinct from the normal state of seasonal sea ice variation, suggesting a bifurcation has occurred from one attractor to two. There was no robust early warning signal of critical slowing down prior to this bifurcation, consistent with it representing the appearance of a new ice cover state rather than the loss of stability of the existing state. The new low ice cover state has been sampled predominantly in summer-autumn and seasonal forcing combined with internal climate variability are likely responsible for triggering recent transitions between the two ice cover states. However, all early warning indicators show destabilization of the summer-autumn sea-ice since 2007. This suggests the new low ice cover state may be a transient feature and further abrupt changes in summer-autumn Arctic sea-ice cover could lie ahead; either reversion to the normal state or a yet larger ice loss.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-04-30
    Description: A global carbon cycle is introduced into a zonally averaged energy balance climate model. The physical model components are similar to those of Budyko (1969) and Sellers (1969). The new carbon components account for atmospheric carbon dioxide concentrations and the terrestrial and oceanic storage of carbon. Prescribing values for the sum of these carbon components, it is found that inclusion of a closed carbon cycle reduces the range of insolation over which stable partial ice cover solutions may occur. This highly simplified climate model also predicts that the estimated release of carbon from fossil fuel burning over the next hundred years could result in the eventual melting of the ice sheets. Keywords: climate, carbon cycle,zonal model, earth system modelling
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-06
    Description: The prospect of finding generic early warning signals of an approaching tipping point in a complex system has generated much recent interest. Existing methods are predicated on a separation of timescales between the system studied and its forcing. However, many systems, including several candidate tipping elements in the climate system, are forced periodically at a timescale comparable to their internal dynamics. Here we find alternative early warning signals of tipping points due to local bifurcations in systems subjected to periodic forcing whose time scale is similar to the period of the forcing. These systems are not in, or close to, a fixed point. Instead their steady state is described by a periodic attractor. We show that the phase lag and amplification of the system response provide early warning signals, based on a linear dynamics approximation. Furthermore, the power spectrum of the system's time series reveals the generation of harmonics of the forcing period, the size of which are proportional to how nonlinear the system's response is becoming with nonlinear effects becoming more prominent closer to a bifurcation. We apply these indicators to a simple conceptual system and satellite observations of Arctic sea ice area, the latter conjectured to have a bifurcation type tipping point. We find no detectable signal of the Arctic sea ice approaching a local bifurcation.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-01-18
    Description: Major revolutions in energy capture have occurred in both Earth and human history, with each transition resulting in higher energy input, altered material cycles and major consequences for the internal organization of the respective systems. In Earth history, we identify the origin of anoxygenic photosynthesis, the origin of oxygenic photosynthesis, and land colonization by eukaryotic photosynthesisers as step changes in free energy input to the biosphere. In human history we focus on the Paleolithic use of fire, the Neolithic revolution to farming, and the Industrial revolution as step changes in free energy input to human societies. In each case we try to quantify the resulting increase in energy input, and discuss the consequences for material cycling and for biological and social organization. For most of human history, energy use by humans was but a tiny fraction of the overall energy input to the biosphere, as would be expected for any heterotrophic species. However, the industrial revolution gave humans the capacity to push energy inputs towards planetary scales and by the end of the 20th century human energy use had reached a magnitude comparable to the biosphere. By distinguishing world regions and income brackets we show the unequal distribution in energy and material use among contemporary humans. Looking ahead, a prospective sustainability revolution will require scaling up new solar energy technologies and the development of much more efficient material recycling systems – thus creating a more autotrophic social metabolism. Such a transition must also anticipate a level of social organization that can implement the changes in energy input and material cycling without losing the large achievements in standard of living and individual liberation associated with industrial societies.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-13
    Description: A new model of terrestrial rock weathering – the Rock Geochemical Model (RokGeM) – was developed for incorporation into the GENIE Earth System modelling framework. In this paper we describe the model. We consider a range of previously devised parameterizations, ranging from simple dependencies on global mean temperature following Berner et al. (1983), to spatially explicit dependencies on run-off and temperature (GKWM, Bluth and Kump, 1994; GEM-CO2, Amiotte-Suchet et al., 2003) – fields provided by the energy-moisture balance atmosphere model component in GENIE. Using long-term carbon cycle perturbation experiments, we test the effects of a wide range of model parameters, including whether or not the atmosphere was "short-circuited" in the carbon cycle; the sensitivity and feedback strength of temperature and run-off on carbonate and silicate weathering; different river-routing schemes; 0-D (global average) vs. 2-D (spatially explicit) weathering schemes; and the lithology dependence of weathering. Included are details of how to run the model and visualize the results.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-07-09
    Description: There were two abrupt warming events during the last deglaciation, at the start of the Bølling-Allerød and at the end of the Younger Dryas, but their underlying dynamics are unclear. Some abrupt climate changes may involve gradual forcing past a bifurcation point, in which a prevailing climate state loses its stability and the climate tips into an alternative state, providing an early warning signal in the form of slowing responses to perturbations, which may be accompanied by increasing variability. Alternatively, short-term stochastic variability in the climate system can trigger abrupt climate changes, without early warning. Previous work has found signals consistent with slowing down during the last deglaciation as a whole, and during the Younger Dryas, but with conflicting results in the run-up to the Bølling-Allerød. Based on this, we hypothesise that a bifurcation point was approached at the end of the Younger Dryas, in which the cold climate state, with weak Atlantic overturning circulation, lost its stability, and the climate tipped irreversibly into a warm interglacial state. To test the bifurcation hypothesis, we analysed two different climate proxies in three Greenland ice cores, from the Last Glacial Maximum to the end of the Younger Dryas. Prior to the Bølling warming, there was a robust increase in climate variability but no consistent slowing down signal, suggesting this abrupt change was probably triggered by a stochastic fluctuation. The transition to the warm Bølling-Allerød state was accompanied by a slowing down in climate dynamics and an increase in climate variability. We suggest that the Bølling warming excited an internal mode of variability in Atlantic meridional overturning circulation strength, causing multi-centennial climate fluctuations. However, the return to the Younger Dryas cold state increased climate stability. We find no consistent evidence for slowing down during the Younger Dryas, or in a longer spliced record of the cold climate state before and after the Bølling-Allerød. Therefore, the end of the Younger Dryas may also have been triggered by a stochastic perturbation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...