ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-28
    Description: Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at 0.22% supersaturation to those predicted based on size distribution and chemical composition using Köhler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization. For aerosols with organics volume fraction up to 70%, such as the marine boundary layer and free troposphere aerosols, CCN concentration and the corresponding first indirect aerosol effect are insensitive to the properties of organics, and can be accurately predicted with a constant hygroscopicity for all organic species. This simplification can facilitate the prediction of indirect aerosol effects using physically-based parameterizations in large scale models. However, for the aerosols within the thin layers above clouds, organics contributed up to 90% of the total aerosol volume, and a detailed knowledge of organic hygroscopicity is required to accurately predict CCN concentrations. Derivations of organic properties in future closure studies, when aerosols are dominated by organic species, would help constrain the descriptions of organics and aerosol-cloud parameterizations in large scale models.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-11-03
    Description: Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at ~0.2% supersaturation to those predicted based on size distribution and chemical composition using Köhler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization. For aerosols with organics volume fraction up to 70%, such as the marine boundary layer and free troposphere aerosols, CCN concentration and the corresponding first indirect aerosol effect are insensitive to the properties of organics, and can be accurately predicted with a constant hygroscopicity for all organic species. This simplification can facilitate the prediction of indirect aerosol effects using physically-based parameterizations in large scale models. However, for the aerosols within the thin layers above clouds, organics contributed up to 90% of the total aerosol volume, and an accurate knowledge of the overall organic hygroscopicity is required to accurately predict CCN concentrations. Derivations of organic properties in future closure studies, when aerosols are dominated by organic species, would help constrain the descriptions of organics and aerosol-cloud parameterizations in large scale models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-12-03
    Description: Utilizing the unique characteristics of the cloud over the Southeast Pacific (SEP) off the coast of Chile during the VOCALS field campaign, we compared satellite remote sensing of cloud microphysical properties against in-situ data from multi-aircraft observations, and studied the extent to which these retrieved properties are sufficiently constrained and consistent to reliably quantify the influence of aerosol loading on cloud droplet sizes. After constraining the spatial-temporal coincidence between satellite retrievals and in-situ measurements, we selected 17 non-drizzle comparison pairs. For these cases the mean aircraft profiling times were within one hour of Terra overpasses at both projected and un-projected (actual) aircraft positions for two different averaging domains of 5 km and 25 km. Retrieved quantities that were averaged over a larger domain of 25 km compared better statistically with in-situ observations than averages over a smaller domain of 5 km. Comparison at projected aircraft positions was slightly better than un-projected aircraft positions for some parameters. Overall, both MODIS-retrieved effective radius and LWP were larger but highly correlated with the in-situ measured effective radius and LWP, e.g., for averaging domains of 5 km, the biases are up to 1.75 μm and 0.02 mm whilst the correlation coefficients are about 0.87 and 0.85, respectively. The observed effective radius difference between the two decreased with increasing cloud drop number concentration (CDNC), and increased with increasing cloud geometrical thickness. Compared to the absolute effective radius difference, the correlations between the relative effective radius difference and CDNC or cloud geometric thickness are weaker. For averaging domains of 5 km and 25 km, the correlation coefficients between MODIS-retrieved and in-situ measured CDNC are 0.91 and 0.93 with fitting slopes of 1.23 and 1.27, respectively. If the cloud adiabaticity is taken into account, better agreements are achieved for both averaging domains (the fitting slopes are 1.04 and 1.07, respectively). Our comparison and sensitivity analysis of simulated retrievals demonstrate that both cloud geometrical thickness and cloud adiabaticity are important factors in satellite retrievals of effective radius and cloud drop number concentration. The large variabilities in cloud geometrical thickness and adiabaticity, the dependencies of cloud microphysical properties on both quantities (as demonstrated in our sensitivity study of simulated retrievals), and the inability to accurately account for either of them in retrievals lead to some uncertainties and biases in satellite retrieved cloud effective radius, cloud liquid water path, and cloud drop number concentration. However, strong correlations between satellite retrievals and in-situ measurements suggest that satellite retrievals of cloud effective radius, cloud liquid water path, and cloud drop number concentration can be used to investigate aerosol indirect effects qualitatively.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-01-04
    Description: During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 °C with dry air descending from the upper atmospheric and moist air having a boundary layer (BL) contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp〉100 nm) gives a linear relation up to a number concentration of ~150 cm−3, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that ~25 % of aerosol with Dp〉100 nm are interstitial (not activated). A direct comparison of pre-cloud and in-cloud aerosol yields a higher estimate. Artifacts in the measurement of interstitial aerosol due to droplet shatter and evaporation are discussed. Within each of 102 constant altitude cloud transects, CDNC and interstitial aerosol were anti-correlated. An examination of one cloud as a case study shows that the interstitial aerosol appears to have a background, upon which is superimposed a high frequency signal that contains the anti-correlation. The anti-correlation is a possible source of information on particle activation or evaporation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-06-01
    Description: The VAMOS Ocean-Cloud-Atmosphere-Land Regional Experiment (VOCALS-REx) was conducted from 15 October to 15 November 2008 in the South East Pacific (SEP) region to investigate interactions between land, sea and atmosphere in this unique tropical eastern ocean environment and to improve the skill of global and regional models in representing the region. This study synthesises selected aircraft, ship and surface site observations from VOCALS-REx to statistically summarise and characterise the atmospheric composition and variability of the Marine Boundary Layer (MBL) and Free Troposphere (FT) along the 20° S parallel between 70° W and 85° W. Significant zonal gradients in mean MBL sub-micron aerosol particle size and composition, carbon monoxide, sulphur dioxide and ozone were seen over the campaign, with a generally more variable and polluted coastal environment and a less variable, more pristine remote maritime regime. Gradients in aerosol and trace gas concentrations were observed to be associated with strong gradients in cloud droplet number. The FT was often more polluted in terms of trace gases than the MBL in the mean; however increased variability in the FT composition suggests an episodic nature to elevated concentrations. This is consistent with a complex vertical interleaving of airmasses with diverse sources and hence pollutant concentrations as seen by generalised back trajectory analysis, which suggests contributions from both local and long-range sources. Furthermore, back trajectory analysis demonstrates that the observed zonal gradients both in the boundary layer and the free troposphere are characteristic of marked changes in airmass history with distance offshore – coastal boundary layer airmasses having been in recent contact with the local land surface and remote maritime airmasses having resided over ocean for in excess of ten days. Boundary layer composition to the east of 75° W was observed to be dominated by coastal emissions from sources to the west of the Andes, with evidence for diurnal pumping of the Andean boundary layer above the height of the marine capping inversion. Analysis of intra-campaign variability in atmospheric composition was not found to be significantly correlated with observed low-frequency variability in the large scale flow pattern; campaign-average interquartile ranges of CO, SO2 and O3 concentrations at all longitudes were observed to dominate over much smaller differences in median concentrations calculated between periods of different flow regimes. The campaign climatology presented here aims to provide a valuable dataset to inform model simulation and future process studies, particularly in the context of aerosol-cloud interaction and further evaluation of dynamical processes in the SEP region for conditions analogous to those during VOCALS-REx. To this end, our results are discussed in terms of coastal, transitional and remote spatial regimes in the MBL and FT and a gridded dataset are provided as a resource.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-12-02
    Description: This study assesses the ability of the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiant Energy System (CERES), and GOES-10) are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October–16 November 2008) WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties), and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL) depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated meteorological quantities (e.g., MBL temperature and humidity) and aerosol quantities (e.g., underestimations of accumulation mode aerosol number) might affect simulated stratocumulus and energy fluxes over the Southeastern Pacific, and require further investigation. The well-simulated timing and outflow patterns of polluted and clean episodes demonstrate the model's ability to capture daily/synoptic scale variations of aerosol and cloud properties, and suggest that the model is suitable for studying atmospheric processes associated with pollution outflow over the ocean. The overall performance of the regional model in simulating mesoscale clouds and boundary layer properties is encouraging and suggests that reproducing gradients of aerosol and cloud droplet concentrations and coupling cloud-aerosol-radiation processes are important when simulating marine stratocumulus over the Southeast Pacific.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-06-21
    Description: During the VOCALS Regional Experiment, the DOE G-1 aircraft was used to sample a varying aerosol environment pertinent to properties of stratocumulus clouds over a longitude band extending 800 km west from the Chilean coast at Arica. Trace gas and aerosol measurements are presented as a function of longitude, altitude, and dew point in this study. Spatial distributions are consistent with an upper atmospheric source for O3 and South American coastal sources for marine boundary layer (MBL) CO and aerosol, most of which is acidic sulfate in agreement with the dominant pollution source being SO2 from Cu smelters and power plants. Pollutant layers in the free troposphere (FT) can be a result of emissions to the north in Peru or long range transport from the west. At a given altitude in the FT (up to 3 km), dew point varies by 40 °C with dry air descending from the upper atmospheric and moist air having a BL contribution. Ascent of BL air to a cold high altitude results in the condensation and precipitation removal of all but a few percent of BL water along with aerosol that served as CCN. Thus, aerosol volume decreases with dew point in the FT. Aerosol size spectra have a bimodal structure in the MBL and an intermediate diameter unimodal distribution in the FT. Comparing cloud droplet number concentration (CDNC) and pre-cloud aerosol (Dp 〉 100 nm) gives a linear relation up to a number concentration of ~150 cm−3, followed by a less than proportional increase in CDNC at higher aerosol number concentration. A number balance between below cloud aerosol and cloud droplets indicates that ~25 % of aerosol in the PCASP size range are interstitial (not activated). One hundred and two constant altitude cloud transects were identified and used to determine properties of interstitial aerosol. One transect is examined in detail as a case study. Approximately 25 to 50 % of aerosol with Dp 〉 110 nm were not activated, the difference between the two approaches possibly representing shattered cloud droplets or unknown artifact. CDNC and interstitial aerosol were anti-correlated in all cloud transects, consistent with the occurrence of dry in-cloud areas due to entrainment or circulation mixing.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-10-09
    Description: The chemical composition of aerosol particles (Dp ≤ 1.5 μm) was measured over the southeast Pacific ocean during the VOCALS-REx experiment between 16~October and 15 November 2008 using the US DOE G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and how they interacted with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO42−, followed by Na+, Cl−, Org, NH4+, and NO3−, in decreasing order of importance; CH3SO3−1 (MSA), Ca2+, and K+ rarely exceeded their limits of detection of ~0.05 and ~0.15 μg m−3 for anions and cations, respectively. The aerosols were strongly acidic as the NH4+ to SO42− equivalence ratio was typically 〈 0.3; this inferred acidity is corroborated by the conductivity of aqueous samples collected by the PILS. Sea-salt aerosol (SSA) particles, represented by NaCl, showed Cl− deficits caused by both HNO3 and H2SO4, and were externally mixed with SO42− particles as the AMS detected no NO3− whilst uptake of HNO3 occurred only on SSA particles. The SSA loading as a function of wind speed agreed with that calculated from published relationships, and contributed only a small fraction of the total accumulation mode particle number. Vertical distribution of MBL SSA particles (Dp ≤ ~1.5 μm) was uniform, suggesting a very limited dilution from entrainment of free tropospheric (FT) air. It was inferred that because all of the aerosol species (except SSA) exhibited a strong land-to-sea gradient, they were of continental origin. Comparison of relative changes in median values using LOWESS fits as proxies suggests that (1) an oceanic source of NH3 is present between 72° W and 76° W, and (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) FT contributions to MBL gas and aerosols were negligible. Positive Matrix Factorization analysis of organic aerosol mass spectra obtained with the AMS showed an HOA on 28 October 2008 but not on 6 November 2008 that we attribute to a more extensive cloud processing on the later date. A highly oxidized OOA factor resembling fulvic acid was found associated with anthropogenic and biogenic sources as well as long range transported biomass burn plumes in the FT air. A sulfur-containing OOA factor identified as MSA was strongly correlated with SO42−, hence anthropogenic. The very low levels of CH3SO3− observed suggest a limited contribution of DMS to SO42− aerosols production during VOCALS.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-01-16
    Description: Utilizing the unique characteristics of the cloud over the Southeast Pacific (SEP) off the coast of Chile during the VOCALS field campaign, we validated satellite remote sensing of cloud microphysical properties against in situ data from multi-aircraft observations, and studied the extent to which these retrieved properties are sufficiently constrained and consistent to reliably quantify the influence of aerosol loading on cloud droplet sizes. After constraining the spatial-temporal coincidence between satellite retrievals and in situ measurements, we selected 17 non-drizzle comparison pairs. For these cases the mean aircraft profiling times were within one hour of Terra overpass at both projected and un-projected (actual) aircraft positions for two different averaging domains of 5 km and 25 km. Retrieved quantities that were averaged over a larger domain of 25 km compared better statistically with in situ observations than averages over a smaller domain of 5 km. Validation at projected aircraft positions was slightly better than un-projected aircraft positions for some parameters. Overall, both MODIS-retrieved effective radius and LWP were larger but highly correlated with the in situ measured effective radius and LWP. The observed effective radius difference between the two decreased with increasing cloud drop number concentration, and increased with increasing cloud geometrical thickness. Also, MODIS retrievals for adiabatic clouds agreed better with the in situ measurements than for sub-adiabatic clouds. Our validation and sensitivity analysis of simulated retrievals demonstrate that both cloud geometrical thickness and cloud adiabaticity are important factors in satellite retrievals of effective radius and cloud drop number concentration. The large variabilities in cloud geometric thickness and adiabaticity, the dependencies of cloud microphysical properties on both quantities (as demonstrated in our sensitivity study of simulated retrievals), and the inability to accurately account for either of them in retrievals lead to substantial uncertainties and biases in satellite retrieved cloud effective radius, cloud liquid water path, and cloud drop number concentration. However, strong correlations between satellite retrievals and in situ measurements suggest that satellite retrievals of cloud effective radius, cloud liquid water path, and cloud drop number concentration can be used to investigate aerosol indirect effects qualitatively.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-01-16
    Description: As part of the MILAGRO field campaign, the DOE G-1 aircraft was used to make measurements over and downwind of Mexico City with the objective of determining growth characteristics of aerosols from a megacity urban source. This study focuses on number concentration and size distributions. It is found that a 5-fold increase in aerosol volume is accompanied by about a 5-fold increase in accumulation mode number concentration. There is growth in aerosol volume because there are more accumulation mode particles, not because particles are larger. Condensation and volume growth laws were examined to see whether either is consistent with observations. Condensation calculations show that the growth of Aitken mode particles into the accumulation mode size range gives the required increase in number concentration. There are minimal changes in the accumulation mode size distribution with age, consistent with observations. Volume-growth in contrast yields a population of large particles, distinctly different from what is observed. Detailed model calculations are required to translate our observations into specific information on the volatility and properties of secondary organic aerosol.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...