ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-26
    Description: Land surface models are essential parts of climate and weather models. The widely used Noah-MP land surface model requires information on the leaf area index (LAI) and green vegetation fraction (GVF) as key inputs of its evapotranspiration scheme. The model aggregates all agricultural areas into a land use class termed “cropland and pasture”. In a previous study we showed that, on a regional scale, the GVF has a bimodal distribution formed by two crop groups differing in phenology and growth dynamics: early-covering crops (ECC; e.g., winter wheat, winter rapeseed, winter barley) and late-covering crops (LCC; e.g., corn, silage maize, sugar beet). That result can be generalized for central Europe. The present study quantifies the effect of splitting the land use class cropland and pasture of Noah-MP into ECC and LCC on surface energy fluxes and temperature. We further studied the influence of increasing the LCC share, which in the study area (the Kraichgau region, southwest Germany) is mainly the result of heavily subsidized biomass production, on energy partitioning at the land surface. We used the GVF dynamics derived from high-resolution (5 m × 5 m) RapidEye satellite data and measured LAI data for the simulations. Our results confirm that the GVF and LAI strongly influence the partitioning of surface energy fluxes, resulting in pronounced differences between simulations of ECC and LCC. Splitting up the generic crop into ECC and LCC had the strongest effect on land surface exchange processes in July–August. During this period, ECC are at the senescence growth stage or already harvested, while LCC have a well-developed ground-covering canopy. The generic crop resulted in humid bias, i.e., an increase in evapotranspiration by +0.5 mm d−1 (latent heat flux is 1.3 MJ m−2 d−1), decrease in sensible heat flux (H) by 1.2 MJ m−2  d−1 and decrease in surface temperature by −1 ∘C. The bias increased as the shares of ECC and LCC became similar. The observed differences will impact the simulations of processes in the planetary boundary layer. Increasing the LCC share from 28 % to 38 % in the Kraichgau region led to a decrease in latent heat flux (LE) and a heating up of the land surface in the early growing season. Over the second part of the season, LE increased and the land surface cooled down by up to 1 ∘C.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-07
    Description: Peatlands are interesting as carbon storage option, but are also natural emitters of the greenhouse gas methane (CH4). Phragmites peatlands are particularly interesting due to the global abundancy of this wetland plant (Phragmites australis (Cav.) Trin. ex Steud.) and the highly efficient internal gas transport mechanism, which is called Humidity Induced Convection (HIC). The research aim was to (1) clarify how this plant-mediated gas transport influences the CH4 fluxes, (2) which other environmental variables influence the CO2 and CH4 fluxes, and (3) whether Phragmites peatlands are a net source or sink of greenhouse gases. CO2 and CH4 fluxes were measured with the eddy covariance technique within a Phragmites-dominated fen in Southwest Germany. One year of flux data (March 2013 to February 2014) shows very clear diurnal and seasonal patterns for both CO2 and CH4. The diurnal pattern of CH4 fluxes was only visible when living green reed was present. In August the diurnal cycle of CH4 was most distinct, with 11-times higher midday fluxes (15.7 mg CH4 m−2 h−1) than night fluxes (1.41 mg CH4 m−2 h−1). This diurnal cycle correlates the highest with global radiation, which suggest a high influence of the plants on the CH4 flux. But if the cause would be the HIC, it is expected that relative humidity would correlate stronger with CH4 flux. Therefore, we conclude that in addition to HIC, at least one additional mechanism must be involved in the creation of the convective flow within the Phragmites plants. Overall, the fen was a sink for carbon and greenhouse gases in the measured year, with a total carbon uptake of 221 g C m−2 yr−1 (26 % of the total assimilated carbon). The net uptake of greenhouse gases was 52 g CO2-eq m−2 yr−1, which is summed from an uptake of CO2 of 894 g CO2-eq m−2 yr−1 and a release of CH4 of 842 g CO2-eq m−2 yr−1.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-09
    Description: Peatlands are interesting as a carbon storage option, but are also natural emitters of the greenhouse gas methane (CH4). Phragmites peatlands are particularly interesting due to the global abundance of this wetland plant (Phragmites australis) and the highly efficient internal gas transport mechanism, which is called humidity-induced convection (HIC). The research aims were to (1) clarify how this plant-mediated gas transport influences the CH4 fluxes, (2) which other environmental variables influence the CO2 and CH4 fluxes, and (3) whether Phragmites peatlands are a net source or sink of greenhouse gases. CO2 and CH4 fluxes were measured with the eddy covariance technique within a Phragmites-dominated fen in southwest Germany. One year of flux data (March 2013–February 2014) shows very clear diurnal and seasonal patterns for both CO2 and CH4. The diurnal pattern of CH4 fluxes was only visible when living, green reed was present. In August the diurnal cycle of CH4 was the most distinct, with 11 times higher midday fluxes (15.7 mg CH4 m−2 h−1) than night fluxes (1.41 mg CH4 m−2 h−1). This diurnal cycle has the highest correlation with global radiation, which suggests a high influence of the plants on the CH4 flux. But if the cause were the HIC, it would be expected that relative humidity would correlate stronger with CH4 flux. Therefore, we conclude that in addition to HIC, at least one additional mechanism must be involved in the creation of the convective flow within the Phragmites plants. Overall, the fen was a sink for carbon and greenhouse gases in the measured year, with a total carbon uptake of 221 g C m−2 yr−1 (26 % of the total assimilated carbon). The net uptake of greenhouse gases was 52 g CO2 eq. m−2 yr−1, which is obtained from an uptake of CO2 of 894 g CO2 eq. m−2 yr−1 and a release of CH4 of 842 g CO2 eq. m−2 yr−1.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-30
    Description: The energy balance of eddy-covariance (EC) measurements is typically not closed, resulting in one of the main challenges in evaluating and interpreting EC flux data. Energy balance closure (EBC) is crucial for validating and improving regional and global climate models. To investigate the nature of the gap in EBC for agroecosystems, we analyzed EC measurements from two climatically contrasting regions (Kraichgau – KR – and Swabian Jura – SJ) in southwestern Germany. Data were taken at six fully equipped EC sites from 2010 to 2017. The gap in EBC was quantified by ordinary linear regression, relating the energy balance ratio (EBR), calculated as the quotient of turbulent fluxes and available energy, to the residual energy term. In order to examine potential reasons for differences in EBC, we compared the EBC under varying environmental conditions and investigated a wide range of possible controls. Overall, the variation in EBC was found to be higher during winter than summer. Moreover, we determined that the site had a statistically significant effect on EBC but no significant effect on either crop or region (KR vs SJ). The time-variable footprints of all EC stations were estimated based on data measured in 2015, complimented by micro-topographic analyses along the prevailing wind direction. The smallest mean annual energy balance gap was 17 % in KR and 13 % in SJ. Highest EBRs were mostly found for winds from the prevailing wind direction. The spread of EBRs distinctly narrowed under unstable atmospheric conditions, strong buoyancy, and high friction velocities. Smaller footprint areas led to better EBC due to increasing homogeneity. Flow distortions caused by the back head of the anemometer negatively affected EBC during corresponding wind conditions.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-09-24
    Description: The energy balance of eddy covariance (EC) measurements is typically not closed. This so-called energy balance closure (EBC) problem has been a long-standing issue in micrometeorology. It is a main challenge in evaluating and interpreting EC flux data. EBC is crucial for validating and improving regional and global climate models. To investigate the reasons behind EBC more closely for agro-ecosystems, we analysed EC measurements from two climatically contrasting regions (Kraichgau (KR) and Swabian Jura (SJ)) in southwest Germany. Data were taken at six fully equipped EC sites from 2010 to 2017. The gap in EBC was quantified by ordinary linear regression, by the energy balance ratio (EBR) between turbulent fluxes and available energy, and by the residual energy term. In order to examine potential reasons for differences in EBC, we compared the EBC under varying environmental conditions and investigated a wide range of possible controls. Statistical analyses were conducted for the whole data set to test the effects of different regions, years, sites and crops on EBC. We also investigated whether EBC was a function of buoyancy, friction velocity, or atmospheric stability. The time-variable footprints of all EC stations were estimated based on data measured in 2015, complemented by micro-topographic analyses along the prevailing wind direction. The lowest mean annual energy balance gap was 17% in KR and 13% in SJ. Highest EBRs were commonly measured for winds originating from the prevailing wind direction. The variation of EBC was higher in winter than in summer. The measurement site exerted a statistically significant effect on EBC, but not crop or region. The spread of EBR distinctly narrowed under unstable atmospheric conditions, strong buoyancy, and high friction velocities. Smaller footprint areas led to better EBC due to increasing homogeneity. Flow distortions of winds that first travelled past the back head of the anemometer affected EBC negatively.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...