ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-16
    Description: Arctic Ocean surface sea-ice conditions are linked with the deep sea benthic oxygen fluxes via a cascade of interdependencies across ecosystem components such as primary production, food supply, activity of the benthic community, and their functions. Additionally, each ecosystem component is influenced by abiotic factors such as light availability, temperature, water depth, and grain size structure. In this study, we investigated the coupling between surface sea-ice conditions and deep-sea benthic remineralization processes through a cascade of interdependencies in the Fram Strait. We measured sea-ice concentrations, a variety of different sediment characteristics, benthic community parameters, and oxygen fluxes at 12 stations of the LTER HAUSGARTEN observatory, Fram Strait, at water depths of 275–2500 m. Our investigations reveal that the Fram Strait is bisected into two long-lasting and stable regions: (i) a permanently and highly sea-ice-covered area and (ii) a seasonally and low sea-ice-covered area. Within the Fram Strait ecosystem, sea-ice concentration and water depth are two independent abiotic factors, controlling the deep-sea benthos. Sea-ice concentration correlated with the available food and water depth with the oxygen flux. In addition, both abiotic factors sea-ice concentration and water depth correlate with the macrofauna biomass. However, at water depths 〉 1500 m the influence of the surface sea-ice cover is minimal with water depth becoming more dominant. Benthic remineralization across the Fram Strait on average is  ∼ 1 mmol C m−2 d−1. Our data indicate that the portion of newly produced carbon that is remineralized by the benthos is 5 % in the seasonally low sea-ice-covered eastern part of Fram Strait but can be 14 % in the permanently high sea-ice-covered western part of Fram Strait. Here, by comparing a permanently sea-ice-covered area with a seasonally sea-ice-covered area, we discuss a potential scenario for the deep-sea benthic ecosystem in the future Arctic Ocean, in which an increased surface primary production may lead to increasing benthic remineralization at water depths
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-03
    Description: Arctic Ocean surface sea-ice conditions are linked with the deep sea benthic oxygen fluxes via a cascade of dependencies across ecosystem components like primary production, food supply, the activity of the benthic community, and their functions. Additionally, each of the ecosystem components is influenced by abiotic factors like light availability, temperature, water depth or grain size structure. In this study, we investigated the coupling between surface sea-ice conditions and deep-sea benthic remineralization processes through a cascade of dependencies in the Fram Strait. We measured sea-ice concentrations, nutrient profiles, different sediment compounds, benthic community parameters, and oxygen fluxes at 12 stations in the HAUSGARTEN area of the Fram Strait in water depth between 275–2500 m. Our investigations reveal that the Fram Strait is bisected in a permanently and highly sea-ice covered area and a seasonally and low sea-ice covered area, which both are long-lasting and stable. Within the Fram Strait ecosystem, sea-ice concentration and water depth are two independent abiotic factors, controlling the deep-sea benthos. Sea-ice concentration correlates well with the available food, water depth with the oxygen flux, and both abiotic factors correlate with the macrofauna biomass. However, in water depths 〉1500 m the influence of the surface sea-ice cover fades out and water depth effect becomes more dominant. Remineralisation across the Fram Strait is ~ 1 mmol C m−2 d−1. Owing to the contrasting primary production pattern, our data indicate that the portion of newly produced carbon that is remineralised by the benthos is ~2.6 % in the seasonally low sea-ice covered Fram Strait but can be 〉15 % in the permanently high sea-ice covered Fram Strait. Furthermore, by comparing a permanently sea-ice covered area with a seasonally sea-ice covered area, we discuss a potential scenario for the deep-sea benthic ecosystem in the future Arctic Ocean, in which an increased surface primary production can lead to increasing benthic remineralisation in water depths 〈1500 m.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...