ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (14)
  • 1
    Publication Date: 2006-09-21
    Description: A high-order modelling approach to interpret "continental-type" particle formation bursts in the anthropogenically influenced convective boundary layer (CBL) is proposed. The model considers third-order closure for planetary boundary layer turbulence, sulphur and ammonia chemistry as well as aerosol dynamics. In Paper I of four papers, previous observations of ultrafine particle evolution are reviewed, model equations are derived, the model setup for a conceptual study on binary and ternary homogeneous nucleation is defined and shortcomings of process parameterisation are discussed. In the subsequent Papers II, III and IV simulation results, obtained within the framework of a conceptual study on the CBL evolution and new particle formation (NPF), will be presented and compared with observational findings.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-10-06
    Description: The manuscript presents a detailed description of the meteorological and chemical code of Malte – a model to predict new aerosol formation in the lower troposphere. The aerosol dynamics are achieved by the new developed UHMA (University of Helsinki Multicomponent Aerosol Model) code with kinetic limited nucleation as responsible mechanism to form new clusters. First results indicate that the model is able to predict the on- and offset of new particle formation as well as the total aerosol number concentrations that were in good agreement with the observations. Further, comparison of predicted and measured H2SO4 concentrations showed a satisfactory agreement. The simulation results indicated that at a certain transitional particle diameter (2–7 nm), organic molecules can begin to contribute significantly to the growth rate compared to sulphuric acid. At even larger particle sizes, organic molecules can dominate the growth rate on days with significant monoterpene concentrations. The intraday vertical evolution of newly formed clusters and particles in two different size ranges resulted in two maxima at the ground. These particles grow around noon to the detectable size range and agree well with measured vertical profiles.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-09-21
    Description: In the preceding Papers I, II and III a revised columnar high-order modelling approach to model gas-aerosol-turbulence interactions in the convective boundary layer (CBL) was proposed, and simulation results of two synthetic nucleation scenarios (binary vs. ternary) on new particle formation (NPF) in the anthropogenically influenced CBL were presented and discussed. The purpose of the present finishing Paper IV is twofold: Firstly, an attempt is made to compile previous observational findings on NPF bursts in the CBL, obtained from a number of field experiments. Secondly, the scenario simulations discussed in Paper III will be evaluated with respect to the role of CBL turbulence in NPF burst evolution. It was demonstrated, that completely different nucleation mechanisms can lead to the occurrence of NPF bursts in the surface layer, but the corresponding evolution patterns strongly differ with respect to the origin, amplitude and phase of the NPF burst as well as with respect to the time-height evolution of turbulent vertical fluxes and double correlation terms of physicochemical and aerosoldynamical variables. The large differences between the binary and ternary case scenario indicate, that ammonia (NH3) can not be considered as a time-independent tuning parameter in nucleation modelling. Its contribution to the evolution of the NPF burst pattern is much more complicated and reflects the influence of CBL turbulence as well as the strong non-linearity of the ternary nucleation rate. The impact of water (H2O) vapour on the nucleation rate is quite varying depending on the considered nucleation mechanism. According to the classical theory of binary nucleation involving H2O and sulphuric acid (H2SO4), H2O vapour favours NPF, according to the classical theory of ternary nuncleation involving H2O, H2SO4 and NH3 and according to organic nucleation via chemical reactions involving stabilised Criegee intermediates (SCIs), H2O vapour disfavours nucleation, and according to the parameterisation of the collision-controlled binary nucleation rate proposed by Weber et al. (1996), H2O vapour does not explicitly affect the particle formation. Since the H2SO4 concentration is overpredicted in the simulations presented in Paper III, the nucleation rates are too high compared to previous estimations. Therefore, the results are not directly comparable to measurements. Especially NPF events, where organics are suspected to play a key role, such as those observed at the boreal forest station in Hyytiälä (Southern Finland) or at Hohenpeissenberg (mountain site in Southern Germany), can not be explained by employing simple sulphur/ammonia chemistry. However, some valuable hints regarding the role of CBL turbulence in NPF can be obtained. In the literature a number of observations on the link between turbulence and NPF can be found, whose burst patterns support a strong contribution of CBL turbulence to the NPF burst evolution simulated here. Observations, that do not correspond to the scenarios are discussed with respect to possible reasons for the differences between model and observation. The model simulations support some state-of-the-art hypotheses on the contribution of CBL turbulence to NPF. Considering the application of box models, the present study shows, that CBL turbulence, not explicitly considered in such models, can strongly affect the spatio-temporal NPF burst evolution. The columnar high-order model presented here is a helpful tool to elucidate gas-aerosol-turbulence interactions, especially the genesis of NPF bursts in the CBL. An advanced description of the cluster formation and condensation growth is required as well as a comprehensive verification/validation study using observed high-order moments. Further scenario simulations remain to be performed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-09-22
    Description: During the SATURN experiment, which took place from 27 May to 14 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-09-21
    Description: While in Paper I of four papers a revised columnar high-order modelling approach to investigate gas-aerosol-turbulence interactions in the convective boundary layer (CBL) was deduced, in the present Paper II the model capability to predict the evolution of meteorological CBL parameters is demonstrated. Based on a model setup to simulate typical CBL conditions, predicted first-, second- and third-order moments were shown to agree very well with those obtained from in situ and remote sensing turbulence measurements such as aircraft, SODAR and LIDAR measurements as well as with those derived from ensemble-averaged large eddy simulations and wind tunnel experiments. The results show, that the model is able to predict the meteorological CBL parameters, required to verify or falsify, respectively, previous hypothesis on the interaction between CBL turbulence and new particle formation.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-09-21
    Description: In Paper I of four papers, a revised columnar high-order model to investigate gas-aerosol-turbulence interactions in the convective boundary layer (CBL) was proposed. In Paper II, the model capability to predict first-, second- and third-order moments of meteorological variables in the CBL was demonstrated using available observational data. In the present Paper III, the high-order modelling concept is extended to sulphur and ammonia chemistry as well as to aerosol dynamics. Based on the previous CBL simulation, a feasibility study is performed using two "clean air mass" scenarios with an emission source at the ground but low aerosol background concentration. Such scenarios synoptically correspond to the advection of fresh post-frontal air in an anthropogenically influenced region. The aim is to evaluate the time-height evolution of ultrafine condensation nuclei (UCNs) and to elucidate the interactions between meteorological and physicochemical variables in a CBL column. The scenarios differ in the treatment of new particle formation (NPF), whereas homogeneous nucleation according to the classical nucleation theory (CNT) is considered. The first scenario considers nucleation of a binary system consisting of water vapour and sulphuric acid (H2SO4) vapour, the second one nucleation of a ternary system additionally involving ammonia (NH3). Here, the two synthetic scenarios are discussed in detail, whereas special attention is payed to the role of turbulence in the formation of the typical UCN burst behaviour, that can often be observed in the surface layer. The intercomparison of the two scenarios reveals large differences in the evolution of the UCN number concentration in the surface layer as well as in the time-height cross-sections of first-order moments and double correlation terms. Although in both cases the occurrence of NPF bursts could be simulated, the burst characteristics and genesis of the bursts are completely different. It is demonstrated, that observations from the surface layer alone are not conclusive to elucidate the origin of newly formed particles. This is also true with respect to the interpretation of box modelling studies. The binary and ternary NPF bursts observed in the surface layer differ with respect to burst amplitude and phase. New particles simulated in the binary scenario are formed in the forenoon in the upper part of the growing CBL, followed by turbulence-induced top-down transport. Hence, with respect to the burst observation site in the surface layer, new particles are formed ex situ. In opposite to this, the ternary case reveals a much more complex pattern. Here, NPF is initiated in the early morning hours in the surface layer, when temperature (T) is low and relative humidity (RH), sulphur dioxide (SO2) and NH3 concentrations are high, hence new particles are formed in situ. Shortly after that, ex situ NPF in the free troposphere sets in, followed by entrainment and top-down diffusion of newly formed particles into the surface layer. Altogether, these processes mainly contribute to the formation of a strong burst in the morning hours in the ternary scenario. While the time-height cross-section of the binary nucleation rate resembles a "blob"-like evolution pattern, the ternary one resembles a "sucking tube"-like pattern. The time-height cross-sections of the flux pattern and double correlations could be plausibly interpreted in terms of CBL turbulence and entrainment/detrainment processes both in the binary and in the ternary case. Although the present approach is a pure conceptual one, it shows the feasibility to simulate gas-aerosol-turbulence interactions in the CBL. Prior to a dedicated verification/validation study, further attempts are necessary to consider a more advanced description of the formation and activation of thermodynamically stable clusters according to modern concepts proposed by Kulmala et al. (2000), Kulmala (2003) and Kulmala et al. (2004a).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-08
    Description: In order to study the growth/shrinking of a hygroscopic nanoparticle during hydration/dehydration in an atmosphere of water vapour we have employed a thermodynamic approach proposed by Shchekin et al. (2008). This approach uses the mechanic and thermodynamic concept of disjoining pressure of thin films and allows, among others, the prediction of the humidity growth factor of both (i) a homogeneous solution droplet with completely dissolved residual core, and (ii) a heterogeneous solution droplet with partially dissolved residual core as a function of the ambient relative humidity. For application to a nanometric sodium chloride particle we have extended the original approach by (i) consideration of the nonideality of the solution through the dependence of molecular volumes of the solvent and solute molecules and the solute and solvent activities on the solution concentration, by (ii) derivation of an equation for the estimation of the efflorescence properties of a homogeneous solution droplet, and by (iii) combination with the empirical power law fittings for the size dependence of the deliquescence and efflorescence relative humidity values by Biskos et al. (2006a). It was demonstrated how the solution/solute interface energy and the correlation length of a thin solution film can be determined from a combination of experimentally determinable efflorescence and deliquescence humidities with the present calculus. The solution/solute interface energy was found to be in close agreement with some previous values reported in the literature, while it strongly differs from data of some other sources. The calculated deliquescence humidity shows a low sensitivity against the choice of the numerical value for the film correlation length. The estimated film correlation length of 1 nm for a nanometric sodium chloride particle with dry particle radius of 5 nm was found to be reconcilable with available a priori estimates of the correlation length from the literature when the measurement uncertainty of the deliquescence humidity is considered. Considering the combination of an extensive calculus, a comprehensive set of thermophysical constraints, and independent measurements of the deliquescence and efflorescence humidities as functions of dry particle radius, the obtained values of the solution/solute interface energy and the correlation length are in close agreement with previous estimations. The humidification of sodium chloride particles in the initial hydration stages was found to be very sensitive against the specification of the disjoining pressure. The enhancement of the wettability of the particle surface leads to an earlier onset of hygroscopic growth.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-03-27
    Description: During the SATURN experiment, which took place from 27 May to 4 June 2002, new particle formation in the continental boundary layer was investigated. Simultaneous ground-based and tethered-balloon-borne measurements were performed, including meteorological parameters, particle number concentrations and size distributions, gaseous precursor concentrations and SODAR and LIDAR observations. Newly formed particles were observed inside the residual layer, before the break-up process of the nocturnal inversion, and inside the mixing layer throughout the break-up of the nocturnal inversion and during the evolution of the planetary boundary layer.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-11-10
    Description: In part I of the present paper a revised columnar high-order model to investigate gas-aerosol interactions in the convective boundary layer (CBL) was proposed. In part II the model capability to predict first-, second-, and third-order moments of meteorological variables in the CBL was demonstrated using available observational data. In the present part, the high-order modelling concept is extented to sulfur and ammonia chemistry as well as to aerosol dynamics. Based on the previous CBL simulation, two conceptual scenarios of the evolution of ultrafine condensation nuclei (UCN) in an anthropogenically influenced CBL are investigated. The scenarios differ in the treatment of new particle formation, whereas homogeneous nucleation according to the classical nucleation theory is considered. The first scenario considers nucleation of a binary system consisting of water vapour and sulfuric acid vapour, the second one on nucleation of a ternary system additionally involving ammonia. Here, the two scenarios are discussed in detail, whereas special attention is payed to the role of turbulence in the formation of the typical UCN burst behaviour, that can often be observed in the Prandtl layer.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2005-11-10
    Description: In part I to III of the present paper a revised columnar high-order modelling approach to model gas-aerosol interactions in the convective boundary layer (CBL) was proposed, and simulation results of two nucleation scenarios (binary vs. ternary) on new particle formation (NPF) in the anthropogenically influenced CBL were presented. It was demonstrated that both scenarios strongly differ with respect to the amplitude and phase of the NPF burst detectable in the Prandtl layer, as well as with respect to the time-height evolution of turbulent vertical fluxes and double correlation terms of physico-chemical and aerosoldynamical variables. In the present part, an attempt is made to re-evaluate previous observations of NPF bursts in the CBL in view of the scenario simulations discussed in part III. Special attention is payed to the role of CBL turbulence in NPF burst evolution. At first, a compilation of empirical findings and hypothesis on NPF in the CBL derived from a number of field experiments, is performed. Secondly, it is demonstrated, that the binary scenario simulated in part III corresponds well to a number of NPF burst events observed in Hyytiälä (Finland) and Melpitz (Eastern Germany). Here, one of the key hypothesis on the role of turbulence in NPF is confirmed. Other NPF events, such as those observed at Hohenpeissenberg, a mountain site (Southern Germany), can not yet be conclusively explained. To note, that the results of previous box modelling studies to explain NPF events at Hohenpeissenberg are not unambiguous. Nonetheless, based on only two simulated scenarios it is demonstrated, that a columnar high-order model is a helpful tool to elucidate the genesis of NPF bursts frequently observed in the CBL. A comprehensive verification/validation study using observed high-order moments as well as further scenario simulations remain to be performed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...