ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-06-06
    Description: Peroxyacetyl nitrate (CH3CO·O2NO2, abbreviated as PAN) is a trace molecular species present in the troposphere and lower stratosphere due primarily to pollution from fuel combustion and the pyrogenic outflows from biomass burning. In the lower troposphere, PAN has a relatively short lifetime and is principally destroyed within a few hours through thermolysis, but it can act as a reservoir and carrier of NOx in the colder temperatures of the upper troposphere, where UV photolysis becomes the dominant loss mechanism. Pyroconvective updrafts from large biomass burning events can inject PAN into the upper troposphere and lower stratosphere (UTLS), providing a means for the long-range transport of NOx. Given the extended lifetimes at these higher altitudes, PAN is readily detectable via satellite remote sensing. A new PAN data product is now available for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) version 3.0 data set. We report observations of PAN in boreal biomass burning plumes recorded during the BORTAS (quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites) campaign (12 July to 3 August 2011). The retrieval method employed by incorporating laboratory-recorded absorption cross sections into version 3.0 of the ACE-FTS forward model and retrieval software is described in full detail. The estimated detection limit for ACE-FTS PAN is 5 pptv, and the total systematic error contribution to the ACE-FTS PAN retrieval is ~ 16%. The retrieved volume mixing ratio (VMR) profiles are compared to coincident measurements made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on the European Space Agency (ESA) Environmental Satellite (ENVISAT). The MIPAS measurements demonstrated good agreement with the ACE-FTS VMR profiles for PAN, where the measured VMR values are well within the associated measurement errors for both instruments and comparative measurements differ no more than 70 pptv. The ACE-FTS PAN data set is used to obtain zonal mean distributions of seasonal averages from ~ 5–20 km. A strong seasonality is clearly observed for PAN concentrations in the global UTLS. Since the principal source of PAN in the UTLS is due to lofted biomass burning emissions from the pyroconvective updrafts created by large fires, the observed seasonality in enhanced PAN coincides with fire activity in different geographical regions throughout the year.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-16
    Description: Despite its widespread commercial use throughout the twentieth century, primarily in the refrigeration industry, dichlorodifluoromethane (CFC-12) is now known to have the undesirable effect of depleting stratospheric ozone. As this long-lived molecule slowly degrades in the atmosphere, monitoring its vertical concentration profile using infrared sounders on satellite platforms crucially requires accurate laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of dichlorodifluoromethane over the spectral range 800–1270 cm−1, determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26 cm-pathlength cell. Spectra of dichlorodifluoromethane/dry synthetic air mixtures were recorded at resolutions between 0.01 and 0.03 cm−1 (calculated as 0.9/MOPD; MOPD = maximum optical path difference) over a range of temperatures and pressures (7.5–761 Torr and 190–294 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN and GEISA databases.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-18
    Description: The most widely used hydrochlorofluorocarbon (HCFC) commercially since the 1930s has been chlorodifluoromethane, or HCFC-22, which has the undesirable effect ofdepleting stratospheric ozone. As this molecule is currently being phased out under the Montreal Protocol, monitoring its concentration profiles using infrared sounders cruciallyrequires accurate laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of chlorodifluoromethane over the spectral range 730 – 1380 cm−1, determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26-cm-pathlength cell. Spectra of chlorodifluoromethane/dry synthetic air mixtures were recorded at resolutions between 0.01and 0.03 cm−1 (calculated as 0.9/MOPD; MOPD = maximum optical path difference) over a range of temperatures and pressures (7.5–762 Torr and 191–295 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN and GEISA databases; in particular it provides coverage over a wider range of pressures and temperatures, has more accurate wavenumber scales, more consistent integrated band intensities, improved signal-to-noise, is free of channel fringing, and additionally covers the v2 and v7 bands.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-02
    Description: This work reports the first infrared satellite remote-sensing measurements of acetonitrile (CH3CN) in the Earth's atmosphere using solar occultation measurements made by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) between 2004 and 2011. The retrieval scheme uses new quantitative laboratory spectroscopic measurements of acetonitrile (Harrison and Bernath, 2012). Although individual ACE-FTS profile measurements are dominated by measurement noise, median profiles in 10° latitude bins show a steady decline in volume mixing ratio from ~150 ppt (parts per trillion) at 11.5 km to 〈 40 ppt at 25.5–29.5 km. These new measurements agree well with the scant available air- and balloon-borne data in the lower stratosphere. An acetonitrile stratospheric lifetime of 73 ± 20 yr has been determined.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-04
    Description: This work reports the first infrared satellite remote-sensing measurements of acetonitrile (CH3CN) in the Earth's atmosphere using solar occultation measurements made by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) between 2004 and 2011. The retrieval scheme uses new quantitative laboratory spectroscopic measurements of acetonitrile (Harrison and Bernath, 2012). Although individual ACE-FTS profile measurements are dominated by measurement noise, median profiles in 10° latitude bins show a steady decline in volume mixing ratio from ~150 ppt at 11.5 km to
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-15
    Description: Peroxyacetyl nitrate (CH3CO·O2NO2, abbreviated as PAN) is a trace molecular species present in the troposphere and lower stratosphere due primarily to pollution from fuel combustion and the pyrogenic outflows from biomass burning. In the lower troposphere, PAN has a relatively short life-time and is principally destroyed within a few hours through thermolysis, but it can act as a reservoir and carrier of NOx in the colder temperatures of the upper troposphere where UV photolysis becomes the dominant loss mechanism. Pyroconvective updrafts from large biomass burning events can inject PAN into the upper troposphere and lower stratosphere (UTLS), providing a means for the long-range transport of NOx. Given the extended lifetimes at these higher altitudes, PAN is readily detectable via satellite remote sensing. A new PAN data product is now available for the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) Version 3.0 data set. We report measurements of PAN in Boreal biomass burning plumes recorded during the Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) campaign. The retrieval method employed and errors analysis are described in full detail. The retrieved volume mixing ratio (VMR) profiles are compared to coincident measurements made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on the European Space Agency (ESA) ENVIronmental SATellite (ENVISAT). Three ACE-FTS occultations containing measurements of Boreal biomass burning outflows, recorded during BORTAS, were identified as having coincident measurements with MIPAS. In each case, the MIPAS measurements demonstrated good agreement with the ACE-FTS VMR profiles for PAN. The ACE-FTS PAN data set is used to obtain zonal mean distributions of seasonal averages from ~5 to 20 km. A strong seasonality is clearly observed for PAN concentrations in the global UTLS. Since the principal source of PAN in the UTLS is due to lofted biomass burning emissions from the pyroconvective updrafts created by large fires, the observed seasonality in enhanced PAN coincides with fire activity in different geographical regions throughout the year. This work is part of an in-depth investigation that is being conducted in an effort to study the aging and chemical evolution of biomass burning emissions in the UTLS by remote, space-borne measurements made by ACE-FTS to further our understanding of the impact of pyrogenic emissions on atmospheric chemistry. Included in this study will be the addition of new, pyrogenic, volatile organic hydrocarbons (VOCs) and oxygenated volatile organic compounds (OVOCs) to expand upon the already extensive suite of molecules retrieved by ACE-FTS to aid in elucidating biomass burning plume chemistry in the free troposphere.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-06-13
    Description: Peroxyacetyl nitrate (PAN) is an important chemical species in the troposphere as it aids the long-range transport of NOx and subsequent formation of O3 in relatively clean remote regions. Over the past few decades observations from aircraft campaigns and surface sites have been used to better understand the regional distribution of PAN. However, recent measurements made by satellites allow for a global assessment of PAN in the upper troposphere – lower stratosphere (UTLS). In this study, we investigate global PAN distributions from two independent retrieval methodologies, based on measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, on board ENVISAT from the Institute of Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology and the Department of Physics and Astronomy, University of Leicester (UoL). Retrieving PAN from MIPAS is challenging due to the weak signal in the measurements and contamination from other species. Therefore, we compare the two MIPAS datasets with observations from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), insitu aircraft data and the TOMCAT 3-D chemical transport model. MIPAS shows peak UTLS PAN concentrations over the biomass burning regions (e.g. ranging from 150 to 〉 200 pptv at 150 hPa) and during the summertime Asian monsoon as enhanced convection aids the vertical transport of PAN from the lower atmosphere. At 150 hPa, we find significant differences between the two MIPAS datasets in the tropics, where IMK PAN concentrations are larger by 50–100 pptv. Comparisons between MIPAS and ACE-FTS show better agreement with the UoL MIPAS PAN concentrations at 200 hPa, but with mixed results above this altitude. TOMCAT generally captures the magnitude and structure of climatological aircraft PAN profiles within the observational variability allowing it to be used to investigate the MIPAS PAN differences. TOMCAT-MIPAS comparisons show that the model is both positively (UoL) and negatively (IMK) biased against the satellite products. These results show that satellite PAN observations are able to detect realistic spatial variations in PAN in the UTLS, but further work is needed to resolve differences in existing retrievals to allow quantitative use of the products.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-05-04
    Description: A new technique for the satellite remote sensing of greenhouse gases in the atmosphere via the absorption of short-wave infrared laser signals transmitted between counter-rotating satellites in low earth orbit has recently been proposed; this would enable the acquisition of a stable, global set of altitude-resolved concentration measurements. We present the first ground-based experimental demonstration of this new technique, in which the atmospheric absorption of CO2 near 2.1 μm was measured over a ~144 km path length between two peaks in the Canary Islands (at an altitude of ~2.4 km). The retrieved CO2 volume mixing ratio of 400.1 ppm (±14.7 ppm) is consistent within experimental uncertainty with simultaneously recorded in situ validation measurements. We conclude that the new method has a sound basis for monitoring CO2 and other greenhouse gases in the free atmosphere.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-04
    Description: The vast majority of emissions of fluorine-containing molecules are anthropogenic in nature, e.g. chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). These molecules slowly degrade in the atmosphere leading to the formation of HF, COF2, and COClF, which are the main fluorine-containing species in the stratosphere. Ultimately both COF2 and COClF further degrade to form HF, an almost permanent reservoir of stratospheric fluorine due to its extreme stability. Carbonyl fluoride (COF2) is the second most abundant stratospheric "inorganic" fluorine reservoir with main sources being the atmospheric degradation of CFC-12 (CCl2F2), HCFC-22 (CHF2Cl), and CFC-113 (CF2ClCFCl2). This work reports the first global distributions of carbonyl fluoride in the Earth's atmosphere using infrared satellite remote-sensing measurements by the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), which has been recording atmospheric spectra since 2004, and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, which has recorded thermal emission atmospheric spectra between 2002 and 2012. The observations reveal a high degree of seasonal and latitudinal variability over the course of a year. These have been compared with the output of SLIMCAT, a state-of-the-art three-dimensional chemical transport model. In general the observations agree well with each other and compare well with SLIMCAT, although MIPAS is biased high by as much as ~30%. Between January 2004 and September 2010 COF2 grew most rapidly at altitudes above ~25 km in the southern latitudes and at altitudes below ~25 km in the northern latitudes, whereas it declined most rapidly in the tropics. These variations are attributed to changes in stratospheric dynamics over the observation period. The overall COF2 global trend over this period is calculated as 0.85 ± 0.34 % year−1 (MIPAS), 0.30 ± 0.44% year−1 (ACE), and 0.88% year−1 (SLIMCAT).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-08
    Description: The vast majority of emissions of fluorine-containing molecules are anthropogenic in nature, e.g. chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). Many of these fluorine-containing species deplete stratospheric ozone, and are regulated by the Montreal Protocol. Once in the atmosphere they slowly degrade, ultimately leading to the formation of HF, the dominant reservoir of stratospheric fluorine due to its extreme stability. Monitoring the growth of stratospheric HF is therefore an important marker for the success of the Montreal Protocol. We report the comparison of global distributions and trends of HF measured in the Earth's atmosphere by the satellite remote-sensing instruments ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), which has been recording atmospheric spectra since 2004, and HALOE (HALogen Occultation Experiment), which recorded atmospheric spectra between 1991 and 2005, with the output of SLIMCAT, a state-of-the-art three-dimensional chemical transport model. In general the agreement between observation and model is good, although the ACE-FTS measurements are biased high by ∼ 10 % relative to HALOE. The observed global HF trends reveal a substantial slowing down in the rate of increase of HF since the 1990s: 4.97 ± 0.12 % year-1 (1991–1997; HALOE), 1.12 ± 0.08 % year-1 (1998–2005; HALOE), and 0.52 ± 0.03 % year-1 (2004–2012; ACE-FTS). In comparison, SLIMCAT calculates trends of 4.01, 1.10, and 0.48 % year-1, respectively, for the same periods; the agreement is very good for all but the earlier of the two HALOE periods. Furthermore, the observations reveal variations in the HF trends with latitude and altitude, for example between 2004 and 2012 HF actually decreased in the Southern Hemisphere below ∼ 35 km. SLIMCAT calculations broadly agree with these observations, most notably between 2004 and 2012. Such variations are attributed to variability in stratospheric dynamics over the observation period.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...