ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (6)
Collection
Years
  • 1
    Publication Date: 2006-12-18
    Description: Soil emissions of NO and N2O were measured continuously at high frequency for more than one year at 15 European forest sites as part of the EU-funded project NOFRETETE. The locations represent different forest types (coniferous/deciduous) and different nitrogen loads. Geographically they range from Finland in the north to Italy in the south and from Hungary in the east to Scotland in the west. The highest NO emissions were observed from coniferous forests, whereas the lowest NO emissions were observed from deciduous forests. The NO emissions from coniferous forests were highly correlated with N-deposition. The site with the highest average annual emission (82 μg NO-N m−2 h−1) was a spruce forest in South-Germany (Höglwald) receiving an annual N-deposition of 2.9 g m−2. NO emissions close to the detection limit were observed from a pine forest in Finland where the N-deposition was 0.2 g N m−2 a−1. No significant correlation between N2O emission and N-deposition was found. The highest average annual N2O emission (20 μg N2O-N m−2 h−1) was found in an oak forest in the Mátra mountains (Hungary) receiving an annual N-deposition of 1.6 g m−2. N2O emission was significantly negatively correlated with the C/N ratio. The difference in N-oxide emissions from soils of coniferous and deciduous forests may partly be explained by differences in N-deposition rates and partly by differences in characteristics of the litter layer and soil. NO was mainly derived from nitrification whereas N2O was mainly derived from denitrification. In general, soil moisture is lower at coniferous sites (at least during spring time) and the litter layer of coniferous forests is thick and well aerated favouring nitrification and thus release of NO. Conversely, the higher rates of denitrification in deciduous forests due to a compact and moist litter layer lead to N2O production and NO consumption in the soil. The two factors soil moisture and soil temperature are often explaining most of the temporal variation within a site. When comparing annual emissions on a regional scale, however, factors such as nitrogen deposition and forest and soil type become much more important.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-19
    Description: Besides agricultural soils, temperate forest soils have been identified as significant sources of or sinks for important atmospheric trace gases (N2O, NO, CH4, and CO2). Although the number of studies for this ecosystem type increased more than tenfold during the last decade, studies covering an entire year and spanning more than 1–2 yr remained scarce. This study reports the results of continuous measurements of soil-atmosphere C- and N-gas exchange with high temporal resolution carried out since 1994 at the Höglwald Forest spruce site, an experimental field station in Southern Germany. Annual soil N2O emission, NO emission, CH4 uptake, and CO2 emission (1994–2010) varied in a range of 0.2–3.2 kg N2O-N ha−1 yr−1, 6.4–11.4 kg NO-N ha−1 yr−1, 0.9–3.5 kg CH4-C ha−1 yr−1, and 7.0–9.2 t CO2-C ha−1 yr−1, respectively. The observed high fluxes of N-trace gases are most likely a consequence of high rates of atmospheric nitrogen deposition (〉 20 kg N ha−1 yr−1) of NH3 and NOx to our site. For N2O cumulative annual emissions were 〉 0.8 kg N2O-N ha−1 yr−1 high in years with freeze-thaw events (5 out 14 yr). This shows that long-term, multi-year measurements are needed to obtain reliable estimates of N2O fluxes for a given ecosystem. Cumulative values of soil respiratory CO2 fluxes were highest in years with prolonged freezing periods e.g. the years 1996 and 2006, i.e. years with below average annual mean soil temperatures and high N2O emissions. The results indicate that long freezing periods may even drive increased CO2 fluxes not only during soil thawing but also throughout the following growing season. Furthermore, based on our unique database on GHGs we analyzed if soil temperature, soil moisture, or precipitation measurements can be used to approximate GHGs at weekly, monthly, or annual scale. Our analysis shows that simple-to-measure environmental drivers such as soil temperature or soil moisture are suitable to approximate fluxes of NO and CO2 in weekly and monthly scales with a reasonable uncertainty (accounting for up to 80 % of the variance). However, for N2O and CH4 we so far failed to find meaningful correlations and, thus, to provide simple regression models to estimate fluxes. This is most likely due to the complexity of involved processes and counteracting effects of soil moisture and temperature, specifically with regard to N2O production and consumption by denitrification and microbial community dynamics.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-29
    Description: Climate change and air pollution, interact with altering forest management and land-use change to produce short and long-term changes to forest in Europe. The impact of these changes on the forest greenhouse gas (GHG) balance is currently difficult to predict. To improve the mechanistic understanding of the ongoing changes, we studied the response of GHG (N2O, CH4) exchange from forest soils at twelve experimental or natural gradient forest sites, representing anticipated future forest change. The experimental manipulations one or more per site included nitrogen (N) addition (4 sites), changes of climate (temperature, 1 site; precipitation, 2 sites), soil hydrology (3 sites), harvest intensity (1 site), wood ash fertilization (1 site), pH gradient in peat (1 site) and afforestation of cropland (1 site). In most of the investigated treatments N2O emissions increased by 7 ± 3 (range 0–30) μg N2O-N m−2 h−1 across all treatments on mineral soils, but by up to 10 times the mineral soil maximum on an acidic organic soil. Soil moisture together with mineral soil C/N ratio and pH were found to significantly influence N2O emissions across all treatments. Emissions increased with N availability and decreased with soil C/N ratio, especially in interaction with increased soil moisture. High pH reduced the formation of N2O, even under otherwise favourable soil conditions. Oxidation (uptake) of CH4 was reduced from 16 ± 2 to 4 ± 6 μg CH4-C m−2 h−1 by the investigated treatments. The CH4 exchange was significantly influenced by soil moisture and soil C/N ratio across all treatments, and CH4 emissions occurred only in wet or water-saturated conditions. For most of the investigated forest manipulations or natural gradients, the response of both N2O and CH4 fluxes was towards reducing the overall GHG forest sink. The most resilient forests were dry Mediterranean forests, as well as forests with high soil C/N ratio or high soil pH. Mitigation strategies may focus on (i) sustainable management of wet forest areas and forested peat lands, (ii) continuous forest cover management, (iii) reducing atmospheric N input and, thus, N availability, and (iv) improving neutralisation capacity of acid soils (e.g. wood ash application).
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-05-21
    Description: Besides agricultural soils, temperate forest soils have been identified as significant sources of or sinks for important atmospheric trace gases (N2O, NO, CH4, and CO2). Although the number of studies for this ecosystem type increased more than tenfold during the last decade, studies covering an entire year and spanning more than 1–2 years remained scarce. This study reports the results of continuous measurements of soil-atmosphere C- and N-gas exchange with high temporal resolution carried out since 1994 at the Höglwald Forest spruce site, an experimental field station in Southern Germany. Annual soil N2O, NO and CO2 emissions and CH4 uptake (1994–2010) varied in a range of 0.2–3.0 kg N2O-N ha−1yr−1, 6.4–11.4 kg NO-N ha−1yr−1, 7.0–9.2 t CO2-C ha−1yr−1, and 0.9–3.5 kg CH4-C ha−1yr−1, respectively. The observed high fluxes of N-trace gases are most likely a consequence of high rates of atmospheric nitrogen deposition (〉20 kg N ha−1yr−1) of NH3 and NOx to our site. For N2O, cumulative annual emissions were ≥ 0.8 kg N2O-N ha−1yr−1 in years with freeze-thaw events (5 out 14 of years). This shows that long-term, multi-year measurements are needed to obtain reliable estimates of N2O fluxes for a given ecosystem. Cumulative values of soil respiratory CO2 fluxes tended to be highest in years with prolonged freezing periods, i.e. years with below average annual mean soil temperatures and high N2O emissions (e.g. the years 1996 and 2006). Furthermore, based on our unique database on trace gas fluxes we analyzed if soil temperature, soil moisture measurements can be used to approximate trace gas fluxes at daily, weekly, monthly, or annual scale. Our analysis shows that simple-to-measure environmental drivers such as soil temperature or soil moisture are suitable to approximate fluxes of NO and CO2 at weekly and monthly resolution reasonably well (accounting for up to 59 % of the variance). However, for CH4 we so far failed to find meaningful correlations, and also for N2O the predictive power is rather low. This is most likely due to the complexity of involved processes and counteracting effects of soil moisture and temperature, specifically with regard to N2O production and consumption by denitrification and microbial community dynamics. At monthly scale, including information on gross primary production (CO2, NO), and N deposition (N2O), increased significantly the explanatory power of the obtained empirical regressions (CO2: r2 =0.8; NO: r2 = 0.67; N2O, all data: r2 = 0.5; N2O, with exclusion of freeze-thaw periods: r2 = 0.65).
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-06-29
    Description: Soil emissions of NO and N2O were measured continuously at high frequency for more than one year at 15 European forest sites as part of the EU-funded project NOFRETETE. The locations represent different forest types (coniferous/deciduous) and different nitrogen loads. Geographically they range from Finland in the north to Italy in the south and from Hungary in the east to Scotland in the west. The highest NO emissions were observed from coniferous forests, whereas the lowest NO emissions were observed from deciduous forests. The NO emissions from coniferous forests were highly correlated with N-deposition. The site with the highest average annual emission (82 μg NO-Nm−2 h−1) was a spruce forest in South-Germany (Höglwald) receiving an annual N-deposition of 2.9 gm−2. NO emissions close to the detection limit were observed from a pine forest in Finland where the N-deposition was 0.2 g N m−2 y−1. No significant correlation between N2O emission and N-deposition was found. The highest average annual N2O emission (20 μg N2O-Nm−2 h−1) was found in an oak forest in the Mátra mountains (Hungary) receiving an annual N-deposition of 1.6 gm−2. N2O emission was significantly negatively correlated with the C/N ratio. The difference in N-oxide emissions from soils of coniferous and deciduous forests may partly be explained by differences in N-deposition rates and partly by difference in characteristics of the litter layer and soil. NO was mainly derived from nitrification whereas N2O was mainly derived from denitrification. In general, soil moisture is lower at coniferous sites (at least during spring time) and the litter layer of coniferous forests is thick and well aerated favouring nitrification and thus release of NO. Conversely, the higher rates of denitrification in deciduous forests due to a compact and moist litter layer lead to N2O production and NO consumption in the soil. The two factors soil moisture and soil temperature are often explaining most of the temporal variation within a site. When comparing annual emissions on a regional scale, however, factors such as nitrogen deposition and forest and soil type become much more important.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-17
    Description: Forests in Europe are changing due to interactions between climate change, nitrogen (N) deposition and new forest management practices. The concurrent impact on the forest greenhouse gas (GHG) balance is at present difficult to predict due to a lack of knowledge on controlling factors of GHG fluxes and response to changes in these factors. To improve the mechanistic understanding of the ongoing changes, we studied the response of soil–atmosphere exchange of nitrous oxide (N2O) and methane (CH4) at twelve experimental or natural gradient forest sites, representing anticipated future forest change. The experimental manipulations, one or more per site, included N addition (4 sites), changes of climate (temperature, 1 site; precipitation, 2 sites), soil hydrology (3 sites), harvest intensity (1 site), wood ash fertilisation (1 site), pH gradient in organic soil (1 site) and afforestation of cropland (1 site). On average, N2O emissions increased by 0.06 ± 0.03 (range 0–0.3) g N2O-N m−2 yr−1 across all treatments on mineral soils, but the increase was up to 10 times higher in an acidic organic soil. Soil moisture together with mineral soil C / N ratio and pH were found to significantly influence N2O emissions across all treatments. Emissions were increased by elevated N deposition, especially in interaction with increased soil moisture. High pH reduced the formation of N2O, even under otherwise favourable soil conditions. Oxidation (uptake) of CH4 was on average reduced from 0.16 ± 0.02 to 0.04 ± 0.05 g CH4-C m−2 yr−1 by the investigated treatments. The CH4 exchange was significantly influenced by soil moisture and soil C / N ratio across all treatments, and CH4 emissions occurred only in wet or water-saturated conditions. For most of the investigated forest manipulations or natural gradients, the response of both N2O and CH4 fluxes was towards reducing the overall GHG forest sink. The most resilient forests were dry Mediterranean forests, as well as forests with high soil C / N ratio or high soil pH. Mitigation strategies may focus on (i) sustainable management of wet forest areas and forested peatlands, (ii) continuous forest cover management, (iii) reducing atmospheric N input and, thus, N availability, and (iv) improving neutralisation capacity of acid soils (e.g. wood ash application).
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...