ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (2)
  • 1
    Publication Date: 2019-09-13
    Description: Chemical composition of root and shoot litter controls decomposition and, subsequently, C availability for biological nitrogen transformation processes in soils. While aboveground plant residues have been proven to increase N2O emissions, studies on root litter effects are scarce. This study aimed (1) to evaluate how fresh maize root litter affects N2O emissions compared to fresh maize shoot litter, (2) to assess whether N2O emissions are related to the interaction of C and N mineralization from soil and litter, and (3) to analyze changes in soil microbial community structures related to litter input and N2O emissions. To obtain root and shoot litter, Maize plants (Zea mays L.) were cultivated with two N fertilizer levels in a greenhouse and harvested. A two-factorial 22-day laboratory incubation experiment was set up with soil from both N levels (N1, N2) and three litter addition treatments (Control, Root, Root+Shoot). We measured hourly CO2 and N2O fluxes, analyzed soil nitrate and water extractable organic C (WEOC) concentrations, and determined quality parameters of maize litter. Bacterial community structures were analyzed using 16S rRNA gene sequencing. Maize litter quality controlled NO3− and WEOC availability and decomposition related CO2 emissions. High bioavailability of maize shoot litter strongly increased CO2 and N2O emissions, while emissions induced by maize root litter remained low. We identified a strong positive correlation between cumulative CO2 and N2O emissions, supporting our hypothesis that litter quality affects denitrification by creating plant litter associated anaerobic microsites. The interdependency of C and N availability was validated by analyses of regression. Moreover, there was a strong positive interaction between soil NO3− and WEOC concentration resulting in much higher N2O emissions, when both NO3− and WEOC were available. A significant correlation was observed between total CO2 and N2O emissions, the soil bacterial community composition and the litter level, showing a clear separation of Root+Shoot samples of all remaining samples. Bacterial diversity decreased with higher N level and higher input of easily available C. Altogether, changes in bacterial community structure reflected degradability of maize litter with easily degradable C from maize shoot litter favoring fast growing C cycling and N reducing bacteria of the phyla Actinobacteria, Chloroflexi, Firmicutes and Proteobacteria.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-28
    Description: Chemical composition of root and shoot litter controls decomposition and, subsequently, C availability for biological nitrogen transformation processes in soils. While aboveground plant residues have been proven to increase N2O emissions, studies on root litter effects are scarce. This study aimed (1) to evaluate how fresh maize root litter affects N2O emissions compared to fresh maize shoot litter, (2) to assess whether N2O emissions are related to the interaction of C and N mineralization from soil and litter, and (3) to analyze changes in soil microbial community structures related to litter input and N2O emissions. To obtain root and shoot litter, maize plants (Zea mays L.) were cultivated with two N fertilizer levels in a greenhouse and harvested. A two-factorial 22 d laboratory incubation experiment was set up with soil from both N levels (N1, N2) and three litter addition treatments (control, root, root + shoot). We measured CO2 and N2O fluxes, analyzed soil mineral N and water-extractable organic C (WEOC) concentrations, and determined quality parameters of maize litter. Bacterial community structures were analyzed using 16S rRNA gene sequencing. Maize litter quality controlled NO3- and WEOC availability and decomposition-related CO2 emissions. Emissions induced by maize root litter remained low, while high bioavailability of maize shoot litter strongly increased CO2 and N2O emissions when both root and shoot litter were added. We identified a strong positive correlation between cumulative CO2 and N2O emissions, supporting our hypothesis that litter quality affects denitrification by creating plant-litter-associated anaerobic microsites. The interdependency of C and N availability was validated by analyses of regression. Moreover, there was a strong positive interaction between soil NO3- and WEOC concentration resulting in much higher N2O emissions, when both NO3- and WEOC were available. A significant correlation was observed between total CO2 and N2O emissions, the soil bacterial community composition, and the litter level, showing a clear separation of root + shoot samples of all remaining samples. Bacterial diversity decreased with higher N level and higher input of easily available C. Altogether, changes in bacterial community structure reflected degradability of maize litter with easily degradable C from maize shoot litter favoring fast-growing C-cycling and N-reducing bacteria of the phyla Actinobacteria, Chloroflexi, Firmicutes, and Proteobacteria. In conclusion, litter quality is a major driver of N2O and CO2 emissions from crop residues, especially when soil mineral N is limited.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...