ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-02-17
    Description: East Asia contributes to nearly 50% of the global anthropogenic mercury emissions into the atmosphere. Recently, there have been concerns about the long-range transport of mercury from East Asia, which may lead to enhanced dry and wet depositions in other regions. In this study, we performed four monthly simulations (January, April, July and October in 2005) using CMAQ-Hg v4.6 for a number of emission inventory scenarios in an East Asian model domain. Coupled with mass balance analyses, the chemical transport of mercury in East Asia and the resulted mercury emission outflow were investigated. The total annual mercury deposition in the region was estimated to be 821 Mg, with 396 Mg contributed by wet deposition and 425 Mg by dry deposition. Anthropogenic emissions were responsible for most of the estimated deposition (75%). The deposition caused by emissions from natural sources was less important (25%). Regional mercury transport budgets showed strong seasonal variability, with a net removal of RGM (7–15 Mg month−1) and PHg (13–21 Mg month−1) in the domain, and a net export of GEM (60–130 Mg month−1) from the domain. The outflow caused by East Asian emissions (anthropogenic plus natural) was estimated to be in the range of 1369–1671 Mg yr−1, of which 50–60% was caused by emissions from natural sources. The emission outflow represented about 75% of the total mercury emissions in the region, and would contribute to 20–30% of mercury deposition in remote receptors.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-24
    Description: Statistical methods are commonly employed to estimate spatial probabilities of landslide release at the catchment or regional scale. Travel distances and impact areas are often computed by means of conceptual mass point models. The present work introduces a fully automated procedure extending and combining both concepts to compute an integrated spatial landslide probability: (i) the landslide inventory is subset into release and deposition zones. (ii) We employ a simple statistical approach to estimate the pixel-based landslide release probability. (iii) We use the cumulative probability density function of the angle of reach of the observed landslide pixels to assign an impact probability to each pixel. (iv) We introduce the zonal probability i.e. the spatial probability that at least one landslide pixel occurs within a zone of defined size. We quantify this relationship by a set of empirical curves. (v) The integrated spatial landslide probability is defined as the maximum of the release probability and the product of the impact probability and the zonal release probability relevant for each pixel. We demonstrate the approach with a 637 km2 study area in southern Taiwan, using an inventory of 1399 landslides triggered by the typhoon Morakot in 2009. We observe that (i) the average integrated spatial landslide probability over the entire study area corresponds reasonably well to the fraction of the observed landside area; (ii) the model performs moderately well in predicting the observed spatial landslide distribution; (iii) the size of the release zone (or any other zone of spatial aggregation) influences the integrated spatial landslide probability to a much higher degree than the pixel-based release probability; (iv) removing the largest landslides from the analysis leads to an enhanced model performance.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-06-11
    Description: The Chi-Chi Earthquake of September 1999 in Central Taiwan registered a moment magnitude MW of 7.6 on the Richter scale, causing widespread landslides. Subsequent typhoons associated with heavy rainfalls triggered the landslides. The study investigates multi-temporal landslide images from spatial analysis between 1996 and 2005 in the Chenyulan Watershed, Taiwan. Spatial patterns in various landslide frequencies were detected using landscapes metrics. The logistic regression results indicate that frequency of occurrence is an important factor in assessing landslide hazards. Low-occurrence landslides sprawl the catchment while the sustained (frequent) landslide areas cluster near the ridge as well as the stream course. From those results, we can infer that landslide area and mean size for each landslide correlates with the frequency of occurrence. Although negatively correlated with frequency in the low-occurrence landslide, the mean size of each landslide is positively related to frequency in the high-occurrence one. Moreover, this study determines the spatial susceptibilities in landslides by performing logistic regression analysis. Results of this study demonstrate that the factors such as elevation, slope, lithology, and vegetation cover are significant explanatory variables. In addition to the various frequencies, the relationships between driving factors and landslide susceptibility in the study area are quantified as well.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-12-03
    Description: Pilot experiments were conducted to analyse the effect of different environmental factors on the rhizoremediation of petroleum-contaminated soil. Different plant species (cotton, ryegrass, tall fescue and alfalfa), the addition of fertilizer, different concentrations of total petroleum hydrocarbons (TPH) in the soil, bioaugmentation with effective microbial agents (EMA) and plant growth-promoting rhizobacteria (PGPR) and remediation time were tested as influencing factors during the bioremediation process of TPH. The results show that the remediation process can be enhanced by different plant species. The order of effectiveness of the plants was the following: tall fescue 〉 ryegrass 〉 alfalfa 〉 cotton. The degradation rate of TPH increased with increased fertilizer addition, and a moderate urea level of 20 g N (Nitrogen)/m2 was best for both plant growth and TPH remediation. A high TPH content is toxic to plant growth and inhibits the degradation of petroleum hydrocarbons. The results showed that a 5% TPH content gave the best degradation in soil planted with ryegrass. Bioaugmentation with different bacteria and PGPR yielded the following results for TPH degradation: cotton+EMA+PGPR 〉 cotton+EMA 〉 cotton+PGPR 〉 cotton 〉 control. Rapid degradation of TPH was found at the initial period of remediation caused by the activity of microorganisms. A continuous increase of degradation rate was found during the 30–90 days period followed by a slow increase during the 90–150 days period. These results suggest that rhizoremediation can be enhanced with the proper control of different influencing factors that affect both plant growth and microbial activity in the rhizosphere environment.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-25
    Description: We introduce r.randomwalk, a flexible and multi-functional open source tool for backward- and forward-analyses of mass movement propagation. r.randomwalk builds on GRASS GIS, the R software for statistical computing and the programming languages Python and C. Using constrained random walks, mass points are routed from defined release pixels of one to many mass movements through a digital elevation model until a defined break criterion is reached. Compared to existing tools, the major innovative features of r.randomwalk are: (i) multiple break criteria can be combined to compute an impact indicator score, (ii) the uncertainties of break criteria can be included by performing multiple parallel computations with randomized parameter settings, resulting in an impact indicator index in the range 0–1, (iii) built-in functions for validation and visualization of the results are provided, (iv) observed landslides can be back-analyzed to derive the density distribution of the observed angles of reach. This distribution can be employed to compute impact probabilities for each pixel. Further, impact indicator scores and probabilities can be combined with release indicator scores or probabilities, and with exposure indicator scores. We demonstrate the key functionalities of r.randomwalk (i) for a single event, the Acheron Rock Avalanche in New Zealand, (ii) for landslides in a 61.5 km2 study area in the Kao Ping Watershed, Taiwan; and (iii) for lake outburst floods in a 2106 km2 area in the Gunt Valley, Tajikistan.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-01
    Description: Application of a regional model to study of fate and transport of a global pollutant such as mercury in the atmosphere can be challenging and improper usage of models may lead to questionable results. The difficulties in such application stem from the fact that regional models are usually used in relatively small domains and rely heavily on initial and boundary conditions (IC/BC) provided by global models where atmospheric physics and chemical mechanisms are generally diverse. This problem is particularly apparent for a persistent air pollutant such as mercury. In this study, a conventional application of the CMAQ (Community Multi-scale Air Quality) modeling system on regional scale was extended towards a hemispheric scale. Two simulations were performed using different IC/BC obtained from two global models. In terms of model evaluation, aircraft measurements of total gaseous mercury (TGM) concentration as well as mercury concentration and deposition data from ground-based measurements were used altogether in comparisons with the model simulations. The model results suggested an improvement in performance, as evidenced by a better circulation of the pollutant in Northern hemisphere relative to regional-scale simulations performed in our previous work. In this study, the simulation results using the two different inputs were found to be convergent as the simulation time progressed. The model results also suggested that BC has much weaker influence on the simulation results in a hemispheric domain than that on our previous regional assessment where BC was found to be one of the most important factors. In addition, mitigations of influences from IC/BC on model results in a hemispheric domain and implication of peaks of TGM concentration evident in aircraft measurement are also discussed.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-16
    Description: We introduce r.randomwalk, a flexible and multi-functional open-source tool for backward and forward analyses of mass movement propagation. r.randomwalk builds on GRASS GIS (Geographic Resources Analysis Support System – Geographic Information System), the R software for statistical computing and the programming languages Python and C. Using constrained random walks, mass points are routed from defined release pixels of one to many mass movements through a digital elevation model until a defined break criterion is reached. Compared to existing tools, the major innovative features of r.randomwalk are (i) multiple break criteria can be combined to compute an impact indicator score; (ii) the uncertainties of break criteria can be included by performing multiple parallel computations with randomized parameter sets, resulting in an impact indicator index in the range 0–1; (iii) built-in functions for validation and visualization of the results are provided; (iv) observed landslides can be back analysed to derive the density distribution of the observed angles of reach. This distribution can be employed to compute impact probabilities for each pixel. Further, impact indicator scores and probabilities can be combined with release indicator scores or probabilities, and with exposure indicator scores. We demonstrate the key functionalities of r.randomwalk for (i) a single event, the Acheron rock avalanche in New Zealand; (ii) landslides in a 61.5 km2 study area in the Kao Ping Watershed, Taiwan; and (iii) lake outburst floods in a 2106 km2 area in the Gunt Valley, Tajikistan.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-10-09
    Description: East Asia contributes nearly 50% of the global anthropogenic mercury emissions into the atmosphere. Recently, there are concerns for the long-range transport of mercury from East Asia to North America, which may lead to enhanced dry and wet depositions in North America. In this study, we performed four monthly simulations (January, April, July and October in 2005) using CMAQ-Hg v4.6 in an East Asian model domain. Coupled with a mass balance analysis and a number of emission inventory scenarios, the chemical transport of atmospheric mercury, the seasonal mercury transport budgets and mercury emission outflow from the East Asian region were investigated. The total annual mercury deposition in the region for the modeling year is estimated to be 821 Mg, with 396 Mg contributed by wet deposition and 425 Mg contributed by dry deposition. Regional mercury transport budgets show strong seasonal variability, with a net removal of RGM (7~5 Mg mo−1) and PHg (13~21 Mg mo−1), and a net export of GEM (60~130 Mg mo−1) from the study domain. The annual outflow caused by the East Asian emission is estimated to be in the range of 1369~1671 Mg yr−1, primarily in the form of GEM. This represents about 75% of the total mercury emissions (anthropogenic and natural) in the region. The emission outflow from this source region would contribute to 20~30% of mercury deposition in areas remote from anthropogenic emission sources.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...