ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (24)
Collection
  • 1
    Publication Date: 2009-03-27
    Description: Simultaneous observations from the Infrared Atmospheric Sounding Interferometer (IASI) and from the Advanced Microwave Sounding Unit (AMSU), launched together onboard the European MetOp platform in October 2006, are used to retrieve an upper tropospheric content of carbon dioxide (CO2) covering the range 11–15 km (100–300 hPa), in clear-sky conditions, in the tropics, over sea, for the first year of operation of MetOp (January 2008–December 2008). With its very high spectral resolution, IASI provides fourteen channels in the 15 μm band highly sensitive to CO2 with reduced sensitivities to other atmospheric variables. IASI observations, sensitive to both CO2 and temperature, are used in conjunction with AMSU observations, only sensitive to temperature, to decorrelate both signals through a non-linear inference scheme based on neural networks. A key point of this approach is that no use is made of prior information in terms of CO2 seasonality, trend, or geographical patterns. The accuracy of the retrieval is estimated to be about 2.0 ppmv (~0.5%) for a 5°×5° spatial resolution on a monthly time scale. Features of the retrieved CO2 space-time distribution include: (1) a strong seasonal cycle of 4 ppmv in the northern tropics with a maximum in June–July and a minimum in September–October. This cycle is characterized by a backward two-months lag as compared to the surface, by a backward one-month lag as compared to measurements performed at 11 km, and by a forward one-month lag as compared to observations performed at the tropopause (16 km). This is likely due to the time-lag of CO2 cycle while transported from the surface to the upper troposphere; (2) a more complex seasonal cycle in the southern tropics, in agreement with in-situ measurements; (3) a latitudinal variation of CO2 shifting from a South-to-North increase of 3.5 ppmv in boreal spring to a South-to-North decrease of 1.5 ppmv in the fall, in excellent agreement with tropospheric aircraft measurements; (4) signatures of CO2 emissions (such as biomass burning) transported to the troposphere. In addition to bringing an improved view of CO2 distribution, these results from IASI should provide an additional means to observe and understand atmospheric transport pathways of CO2 from the surface to the upper troposphere.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-03-12
    Description: Simultaneous observations from the Infrared Atmospheric Sounding Interferometer (IASI) and from the Advanced Microwave Sounding Unit (AMSU), launched together onboard the European MetOp platform in October 2006, are used to retrieve a mid-to-upper tropospheric content of methane (CH4) in clear-sky conditions, in the Tropics, over sea, for the first 16 months of operation of MetOp (July 2007–October 2008). With its very high spectral resolution, IASI provides nine channels in the 7.7 μm band highly sensitive to CH4 with reduced sensitivities to other atmospheric variables. These channels, sensitive to both CH4 and temperature, are used in conjunction with AMSU channels, only sensitive to temperature, to decorrelate both signals through a non-linear inference scheme based on neural networks. A key point of this approach is that no use is made of prior information in terms of methane seasonality, trend, or geographical patterns. The accuracy of the retrieval is estimated to be about 16 ppbv (~0.9%). Features of the retrieved methane space-time distribution include: (1) a strong seasonal cycle of 30 ppbv in the Northern Tropics with a maximum in January–March and a minimum in July–September, and a flat seasonal cycle in the Southern Tropics, in agreement with in-situ measurements; (2) a latitudinal decrease of 30 ppbv from 20° N to 20° S, in boreal spring and summer, lower than what is observed at the surface but in excellent agreement with tropospheric aircraft measurements; (3) geographical patterns in good agreement with simulations from the atmospheric transport and chemistry model MOZART-2, but with a higher variability and a higher concentration in boreal winter; (4) signatures of CH4 emissions transported to the middle troposphere such as a large plume of elevated tropospheric methane south of the Asian continent, which might be due to Asian emissions from rice paddies uplifted by deep convection during the monsoon period and then transported towards Indonesia. In addition to bringing a greatly improved view of methane distribution, these results from IASI should provide a means to observe and understand atmospheric transport pathways of methane from the surface to the upper troposphere.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-09-13
    Description: We show that mineral dust optical depth and altitude can be retrieved from the Aqua - Advanced Infrared Radiation Sounder (AIRS) measurements. Sensitivity studies performed with a high spectral resolution radiative transfer code show that dust effect on brightness temperatures may reach about 10 Kelvins for some channels. Using a Look-Up-Table approach, we retrieve not only the 10 µm optical depth but also the altitude of Saharan dust layer, above the Atlantic Ocean, from April to September 2003. A key point of our method is its ability to retrieve dust altitude from satellite observations. The time and space distribution of the optical depth is in good agreement with the Moderate resolution Imaging Spectroradiometer (MODIS) products. Comparing MODIS and AIRS aerosol optical depths, we find that the ratio between infrared and visible optical depths decreases during transport from 0.35 to 0.22, revealing a loss in coarse particles caused by gravitational settling. The evolution of dust altitude from spring to summer is in agreement with current knowledge on transport seasonality.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-04-25
    Description: Since July 2007, monthly averages of mid-tropospheric methane have been retrieved in the tropics over land and sea, by day and night, from IASI onboard MetOp-A, yielding a complete view of the geographical distribution, seasonality and long-term tendency of methane in the mid-troposphere. Retrieved methane displays a clear seasonal cycle of ~25 ppbv in the northern tropics, with a maximum in November and a minimum in April–May, a more complex cycle of ~15 ppbv in the southern tropics, and a south-to-north latitudinal variation of ~30 ppbv – in good agreement with regular aircraft measurements of the CONTRAIL program. Comparisons with CARIBIC aircraft measurements made at ~11 km yield an averaged difference between collocated IASI estimates and CARIBIC measurements of 7.2 ppbv with a standard deviation of 13.1 ppbv. Comparisons with aircraft measurements made above 6 km during five HIPPO campaigns give an averaged difference between collocated IASI estimates and HIPPO measurements of 5.1 ppbv with a standard deviation of 16.3 ppbv. These comparisons show that IASI captures well the evolution of mid-tropospheric methane. In particular, in 2007 and 2008, IASI shows an increase of mid-tropospheric methane in the tropical region of 9.5 ± 2.8 and 6.3 ± 1.7 ppbv yr−1, respectively – in excellent agreement with the rate of increase measured at the surface after almost a decade of near-zero growth. IASI also indicates a slowing down of this increase in the following years to ~2 ppbv yr−1, with the highest increase in 2010. Assuming that the recent evolution of methane is mostly due to an increase in surface emissions, IASI might indicate a decrease in tropical wetland emissions for the period 2009–2011 compared to 2007–2008, in agreement with decreasing tropical precipitation over this period, together with an increase in biomass burning emissions in 2010 in the southern tropics.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-02-19
    Description: Monthly mean infrared (10 μm) dust layer aerosol optical depth (AOD) and mean altitude are simultaneously retrieved over the tropics (30° S–30° N) from almost seven years of Atmospheric Infrared Sounder (AIRS) observations covering the period January 2003 to September 2009. The method developed relies on the construction of look-up-tables computed for a large selection of atmospheric situations and follows two main steps: first, determination of the observed atmospheric thermodynamic situation and, second, determination of the dust properties. A very good agreement is found between AIRS-retrieved AODs and visible optical depths from the Moderate resolution Imaging Spectroradiometer (MODIS/Aqua) during the main (summer) dust season, in particular for three regions of the tropical North Atlantic and one region of the north-western Indian Ocean. Outside this season, differences are mostly due to the sensitivity of MODIS to aerosol species other than dust and to the more specific sensitivity of AIRS to the dust coarse mode. AIRS-retrieved dust layer mean altitudes are compared to the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP/CALIPSO) aerosol mean layer altitude for the period June 2006 to June 2009. Results for a region of the north tropical Atlantic downwind of the Sahara show a good agreement between the two products (σ≈360 m). Differences observed in the peak-to-trough seasonal amplitude, smaller from AIRS, are principally attributed to the large difference in spatial sampling of the two instruments. They also come from the intrinsic limit in sensitivity of the passive infrared sounders for low altitudes. These results demonstrate the capability of high resolution infrared sounders to measure not only dust aerosol AOD but also the mean dust layer altitude.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-01-10
    Description: This article presents a retrieval method and a statistical analysis of the bulk microphysical properties of semi-transparent ice clouds using the Atmospheric Infrared Sounder (AIRS). The method relies on spectral differences of cirrus emissivities in the 8–12 μm range and is sensitive to the effective ice crystal diameter (De) and ice water path (IWP) of up to 85 μm and 120 g m−2, respectively. An indication of the most frequent ice crystal habit in the cirrus has been obtained by using separately single scattering properties of column-like and aggregate-like ice crystals in the simulations. Uncertainties due to hypotheses on atmospheric parameters and ice crystal single scattering properties are discussed and the cirrus emissivity and temperature range for the applicability of the method are determined. To be sure that the cirrus only includes ice crystals, one has to restrict the cloud temperature range to Tcld
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-03-16
    Description: Major limitations of our present knowledge of the global distribution of CO2 in the atmosphere are the uncertainty in atmospheric transport and the sparseness of in situ concentration measurements. Limb viewing spaceborne sounders such as the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) offer a vertical resolution of a few kilometres for profiles, which is much better than currently flying or planned nadir sounding instruments can achieve. After having demonstrated the feasibility of obtaining CO2 vertical profiles in the 5–25 km altitude range with an accuracy of about 2 ppm in a previous study, we present here the results of five years of ACE-FTS observations in terms of monthly mean profiles of CO2 averaged over 10° latitude bands for northern mid-latitudes. These results are compared with in-situ aircraft measurements and with simulations from two different air transport models. Key features of the measured altitude distribution of CO2 are shown to be accurately reproduced by the ACE-FTS retrievals: variation in altitude of the seasonal cycle amplitude and extrema, seasonal change of the vertical gradient, and mean growth rate. We show that small but significant differences from model simulations could result from an over estimation of the model circulation strength during the northern hemisphere spring. Coupled with column measurements from a nadir viewing instrument, it is expected that occultation measurements will bring useful constraints to the surface carbon flux determination.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-06-25
    Description: Infrared Atmospheric Sounder Interferometer (IASI) observations covering the period from July 2007 to December 2011 are interpreted in terms of monthly mean, 1°×1°, 10 μm dust Aerosol Optical Depth (AOD), mean altitude and coarse mode effective radius. The geographical study area includes the northern tropical Atlantic and the northwest Arabian Sea, both characterised by strong, regular dust events. The method developed relies on the construction of Look-Up-Tables computed for a large selection of atmospheric situations and observing conditions. At a regional scale, a good agreement is found between IASI-retrieved 10 μm AOD and total visible optical depth at 550 nm from either the Moderate resolution Imaging Spectroradiometer (MODIS/Aqua or Terra), or the Multi-angle Imaging SpectroRadiometer (MISR), or the Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar (PARASOL). Taking into account the ratio existing between infrared and visible AODs, the diversity between the different 550 nm AODs is similar to the difference between these and the IASI AODs. The infrared AOD to visible AOD ratio, partly reflecting the varying distribution of the dust layer between the dust coarse mode particles seen by IASI, and the fine mode seen by the other instruments, is found to vary with the region observed with values close to already published values. Comparisons between the climatologies of the 10 μm IASI AOD and of the PARASOL non-spherical coarse mode AOD at 865 nm, both expected to be representative of the dust coarse mode, lead to conclusions differing according to the region considered. These differences are discussed in the light of the MODIS Angström exponent (865–550 nm). At local scale, around six Aerosol Robotic Network (AERONET) sites, close or far from the dust sources, a similar satisfactory agreement is found between IASI and the visible AODs and the differences between these products are shown and analysed. IASI-retrieved dust layer mean altitudes also compare well with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP/CALIPSO) aerosol mean layer altitude, both in terms of climatology and of zonal evolution throughout the Atlantic. Comparisons between the IASI-retrieved dust coarse mode effective radius and retrievals from AERONET at the six sites brings into evidence an almost systematic bias of about +0.35 μm (IASI-AERONET). Removing this bias leads to a satisfactory agreement between the climatologies of these two products. Overall, these results illustrate the dust westward transport characterised by a fast decrease of the dust optical depth, a somewhat slower decrease of the altitude, and an effective radius remaining almost constant during summer throughout the northern tropical Atlantic. They also demonstrate the capability of high resolution infrared sounders to contribute improving our understanding of processes related to the aerosols (transport, sources, cycles, effect of aerosols on the terrestrial radiation, etc.).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-09-12
    Description: Since July 2007, monthly averages of mid-tropospheric methane are retrieved in the Tropics over land and sea, by day and night, from IASI onboard MetOp-A, yielding a complete view of the geographical distribution, seasonality and long-term tendency of methane in the mid-troposphere. Retrieved methane displays a clear seasonal cycle of ~25 ppbv in the Northern Tropics, with a maximum in November and a minimum in April–May, a more complex cycle of ~15 ppbv in the Southern Tropics, and a south-to-north latitudinal variation of ~30 ppbv, in good agreement with regular aircraft measurements of the CONTRAIL program. Comparisons with CARIBIC aircraft measurements made at ~11 km yield an averaged difference between collocated IASI estimates and CARIBIC measurements of 7.2 ppbv with a standard deviation of 13.1 ppbv, and show that IASI captures well the evolution of mid-tropospheric methane. In particular, in 2007 and 2008, IASI shows an increase of mid-tropospheric methane in the tropical region of 9.5 ± 2.8 and 6.3 ± 1.7 ppbv yr−1 respectively, in excellent agreement with the rate of increase measured at the surface after almost a decade of near-zero growth. IASI also indicates a slowing down of this increase in the following years to ~2 ppbv yr−1, with the highest increase in 2010. Assuming that the recent evolution of methane is mostly due to an increase in surface emissions, IASI might indicate a decrease in tropical wetland emissions for the period 2009–2011, in agreement with decreasing tropical precipitation over this period, together with an increase in biomass burning emissions in 2010 in the Southern Tropics.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-11-18
    Description: IASI-derived monthly mean infrared (10 μm) dust aerosol optical depth (AOD) and altitude are evaluated against ground based AERONET measurements of the 500 nm coarse mode AOD and CALIOP measurements of the altitude at 38 AERONET sites within the tropical belt (30° N–30° S). The period covered extends from July 2007 to December 2012. The evaluation goes through the analysis of Taylor diagrams and box and whiskers plots, separating situations over sea and over land. Concerning AOD, the overall correlation for the sites over sea comes to 0.88 for 713 items (IASI and AERONET monthly mean bins). The overall normalized standard deviation is of 0.96. Over land, essentially desert, correlation is of 0.74 for 582 items and the normalized standard deviation is of 0.87. This slight but significant degradation over land most probably results from the greater complexity of the surface (heterogeneity, elevation) and, to a lesser extent, to the episodic presence of dust within the boundary layer (particularly for sites close to active sources) to which IASI, as any thermal infrared sounder, is poorly sensitive contrary to AERONET. Concerning altitude over sea, correlation is of 0.78 for 925 items and the normalized standard deviation is of 1.03. Results over land, essentially over deserts, are not satisfactory for a majority of sites. To the reasons listed above for the AOD must be added the smaller IASI signal induced by the altitude compared to the signal induced by the AOD. Site by site, disparities appear that we estimate being principally due to either the insufficient number of AERONET observations throughout the period considered, to the complexity of the situation mixing several aerosol types (case of the Persian Gulf, for example), to surface heterogeneities (elevation, emissivity, etc.), or to the use of a single aerosol model ("MITR"). Results using another aerosol model with different refractive indices are presented and discussed. We conclude that the present results demonstrate the usefulness of IASI data as an additional constraint to a better knowledge of the impact of aerosols on the climate system.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...