ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Sprache
Ergebnisse pro Seite
Sortieren nach
Sortierung
Anzahl gespeicherter Suchen in der Suchhistorie
E-Mail-Adresse
Voreingestelltes Exportformat
Voreingestellte Zeichencodierung für Export
Anordnung der Filter
Maximale Anzahl angezeigter Filter
Autovervollständigung
Themen (Es wird nur nach Zeitschriften und Artikeln gesucht, die zu einem oder mehreren der ausgewählten Themen gehören)
Feed-Format
Anzahl der Ergebnisse pro Feed
feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Copernicus  (2)
Sammlung
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2017-09-22
    Beschreibung: How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m−2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m−2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the observed leaf C–LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic Cstem ∕ Cleaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.
    Print ISSN: 1991-959X
    Digitale ISSN: 1991-9603
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-03-21
    Beschreibung: How carbon (C) is allocated to different plant tissues (leaves, stem and roots) determines C residence time and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and Leaf Area Index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a Land Surface Model (LSM), the Community Land Model (CLM4.5). We ran CLM for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocation schemes: i) Dynamic C allocation scheme (named "D-CLM") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual Net Primary Production (NPP). ii) An alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i) C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem and coarse roots iii–iv) Two fixed C allocation schemes, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM generally overestimated Gross Primary Production (GPP) and ecosystem respiration, and underestimated Net Ecosystem Exchange (NEE). In D-CLM, initial aboveground biomass in 1980 was largely overestimated (between 10527 and 12897 g Cm-2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g Cm-2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM overestimated LAI in both evergreen and deciduous sites because the leaf C-LAI relationship in the model did not match the observed leaf C-LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic Cstem/Cleaf ratios and strongly reduced the overestimation of initial aboveground biomass, and aboveground NPP for deciduous forests by D-CLM. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. That could be done by addressing some of the current model assumptions about C allocation and the associated parameter uncertainty. Our results highlight the importance of using aboveground biomass data to evaluate and constrain the C allocation scheme in the model, and in particular, the sensitivity to the stem turnover rate. Revising these will be critical to improving long-term C processes in LSMs, and improve their projections of biomass accumulation in forests.
    Print ISSN: 1991-9611
    Digitale ISSN: 1991-962X
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...