ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (4)
  • 1
    Publication Date: 2013-04-17
    Description: The lack of long and reliable time series of solar spectral irradiance (SSI) measurements makes an accurate quantification of solar contributions to recent climate change difficult. Whereas earlier SSI observations and models provided a qualitatively consistent picture of the SSI variability, recent measurements by the SORCE (SOlar Radiation and Climate Experiment) satellite suggest a significantly stronger variability in the ultraviolet (UV) spectral range and changes in the visible and near-infrared (NIR) bands in anti-phase with the solar cycle. A number of recent chemistry-climate model (CCM) simulations have shown that this might have significant implications on the Earth's atmosphere. Motivated by these results, we summarize here our current knowledge of SSI variability and its impact on Earth's climate. We present a detailed overview of existing SSI measurements and provide thorough comparison of models available to date. SSI changes influence the Earth's atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temperature and ozone distributions in the stratosphere, and indirectly, through dynamical feedbacks. We investigate these direct and indirect effects using several state-of-the art CCM simulations forced with measured and modelled SSI changes. A unique asset of this study is the use of a common comprehensive approach for an issue that is usually addressed separately by different communities. We show that the SORCE measurements are difficult to reconcile with earlier observations and with SSI models. Of the five SSI models discussed here, specifically NRLSSI (Naval Research Laboratory Solar Spectral Irradiance), SATIRE-S (Spectral And Total Irradiance REconstructions for the Satellite era), COSI (COde for Solar Irradiance), SRPM (Solar Radiation Physical Modelling), and OAR (Osservatorio Astronomico di Roma), only one shows a behaviour of the UV and visible irradiance qualitatively resembling that of the recent SORCE measurements. However, the integral of the SSI computed with this model over the entire spectral range does not reproduce the measured cyclical changes of the total solar irradiance, which is an essential requisite for realistic evaluations of solar effects on the Earth's climate in CCMs. We show that within the range provided by the recent SSI observations and semi-empirical models discussed here, the NRLSSI model and SORCE observations represent the lower and upper limits in the magnitude of the SSI solar cycle variation. The results of the CCM simulations, forced with the SSI solar cycle variations estimated from the NRLSSI model and from SORCE measurements, show that the direct solar response in the stratosphere is larger for the SORCE than for the NRLSSI data. Correspondingly, larger UV forcing also leads to a larger surface response. Finally, we discuss the reliability of the available data and we propose additional coordinated work, first to build composite SSI data sets out of scattered observations and to refine current SSI models, and second, to run coordinated CCM experiments.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-15
    Description: Solar spectral fluxes (or irradiance) measured by the SOlar Radiation and Climate Experiment (SORCE) show different variability at ultraviolet (UV) wavelengths compared to other irradiance measurements and models (e.g. NRL-SSI, SATIRE-S). Some modelling studies have suggested that stratospheric/lower mesospheric O3 changes during solar cycle 23 (1996–2008) can only be reproduced if SORCE solar fluxes are used. We have used a 3-D chemical transport model (CTM), forced by meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF), to simulate middle atmospheric O3 using three different solar flux data sets (SORCE, NRL-SSI and SATIRE-S). Simulated O3 changes are compared with Microwave Limb Sounder (MLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite data. Modelled O3 anomalies from all solar flux data sets show good agreement with the observations, despite the different flux variations. The off-line CTM reproduces these changes through dynamical information contained in the analyses. A notable feature during this period is a robust positive solar signal in the tropical middle stratosphere, which is due to realistic dynamical changes in our simulations. Ozone changes in the lower mesosphere cannot be used to discriminate between solar flux data sets due to large uncertainties and the short time span of the observations. Overall this study suggests that, in a CTM, the UV variations detected by SORCE are not necessary to reproduce observed stratospheric O3 changes during 2001–2010.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-19
    Description: During periods of high solar activity, the Earth receives ≈ 0.1% higher total solar irradiance (TSI) than during low activity periods. Variations of the solar spectral irradiance (SSI) however, can be larger, with relative changes of 1 to 20% observed in the ultraviolet (UV) band, and in excess of 100% in the soft X-ray range. SSI changes influence the Earth's atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temperature and ozone distributions in the stratosphere, and indirectly, through dynamical feedbacks. Lack of long and reliable time series of SSI measurements makes the accurate quantification of solar contributions to recent climate change difficult. In particular, the most recent SSI measurements show a larger variability in the UV spectral range and anomalous changes in the visible and near-infrared (NIR) bands with respect to those from earlier observations and from models. A number of recent studies based on chemistry-climate model (CCM) simulations discuss the effects and implications of these new SSI measurements on the Earth's atmosphere, which may depart from current expectations. This paper summarises our current knowledge of SSI variability and its impact on Earth's climate. An interdisciplinary analysis of the topic is given. New comparisons and discussions are presented on the SSI measurements and models available to date, and on the response of the Earth's atmosphere and climate to SSI changes in CCM simulations. In particular, the solar induced differences in atmospheric radiative heating, temperature, ozone, mean zonal winds, and surface signals are investigated in recent simulations using atmospheric models forced with the current lower and upper boundaries of SSI solar cycle estimated variations from the NRLSSI model data and from SORCE/SIM measurements, respectively. Additionally, the reliability of available data is discussed and additional coordinated CCM experiments are proposed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-05-08
    Description: Solar spectral fluxes (or irradiance) measured by the SOlar Radiation and Climate Experiment (SORCE) show different variability at ultraviolet (UV) wavelengths compared to other irradiance measurements and models (e.g. NRL-SSI, SATIRE-S). Some modelling studies have suggested that stratospheric/lower mesospheric O3 changes during solar cycle 23 (1996–2008) can only be reproduced if SORCE solar fluxes are used. We have used a 3-D chemical transport model (CTM), forced by meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF), to simulate middle atmospheric O3 using three different solar flux datasets (SORCE, NRL-SSI and SATIRE-S). Simulated O3 changes are compared with Microwave Limb Sounder (MLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite data. Modelled O3 anomalies from all solar flux datasets show good agreement with the observations, despite the different flux variations. The off-line CTM reproduces these changes through dynamical information contained in the analyses. A notable feature during this period is a robust positive solar signal in the tropical middle stratosphere due to changes in stratospheric dynamics. Ozone changes in the lower mesosphere cannot be used to discriminate between solar flux datasets due to large uncertainties and the short time span of the observations. Overall this study suggests that, in a CTM, the UV variations detected by SORCE are not necessary to reproduce observed stratospheric O3 changes during 2001–2010.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...