ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-22
    Description: Optical properties of flame-generated black carbon (BC) containing soot particles were quantified at multiple wavelengths for particles produced using two different flames: a methane diffusion flame and an ethylene premixed flame. Measurements were made for (i) nascent soot particles, (ii) thermally denuded nascent particles, and (iii) particles that were coated and then thermally denuded, leading to the collapse of the initially lacy, fractal-like morphology. The measured mass absorption coefficients (MACs) depended on soot maturity and generation but were similar between flames for similar conditions. For mature soot, here corresponding to particles with volume-equivalent diameters 〉∼160 nm, the MAC and absorption Ångström exponent (AAE) values were independent of particle collapse while the single-scatter albedo increased. The MAC values for these larger particles were also size-independent. The mean MAC value at 532 nm for larger particles was 9.1±1.1 m2 g−1, about 17 % higher than that recommended by Bond and Bergstrom (2006), and the AAE was close to unity. Effective, theory-specific complex refractive index (RI) values are derived from the observations with two widely used methods: Lorenz–Mie theory and the Rayleigh–Debye–Gans (RDG) approximation. Mie theory systematically underpredicts the observed absorption cross sections at all wavelengths for larger particles (with x〉0.9) independent of the complex RI used, while RDG provides good agreement. (The dimensionless size parameter x=πdp/λ, where dp is particle diameter and λ is wavelength.) Importantly, this implies that the use of Mie theory within air quality and climate models, as is common, likely leads to underpredictions in the absorption by BC, with the extent of underprediction depending on the assumed BC size distribution and complex RI used. We suggest that it is more appropriate to assume a constant, size-independent (but wavelength-specific) MAC to represent absorption by uncoated BC particles within models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-10
    Description: Atmospheric temperatures and winds in the mesosphere and lower thermosphere have been measured simultaneously using the Aura satellite and a meteor radar at Bear Lake Observatory (42° N, 111° W). The data presented in this study is from the interval March 2008 to July 2011. The mean winds observed in the summer-time over Bear Lake Observatory show the meridional winds to be equatorward at all heights during April-August and to reach monthly-mean speeds of −12 ms−1. The mean winds are closely related to temperatures in this region of the atmosphere and in the summer the coldest mesospheric temperatures occur about two weeks after the strongest equatorward meridional winds. In other seasons the meridional winds are poleward, reaching monthly-mean values of up to 12 ms−1. The zonal winds are eastward through most of the year and in the summer strong eastward zonal wind shears of up to ~4.5 ms−1 km−1 are present. However, westward winds are observed at the upper heights in winter and sometimes during the equinoxes. Considerable inter-annual variability is observed in the mean winds and temperatures. Comparisons of the observed winds with URAP and HWM-07 reveal some significant differences. Our radar zonal wind observations are generally more weakly eastward than these predicted by the URAP model zonal winds. Considering the radar meridional winds, in comparison to the HWM-07 our observations reveal equatorward flow at all heights in the summer whereas HWM-07 suggests that only weakly equatorward, or even poleward, flows occur at the lower heights. However, the zonal winds observed by the radar and modelled by HWM-07 are generally similar in structure and strength. Signatures of the 16- and 5-day planetary waves are clearly evident in both the radar-wind data and Aura-temperature. Short-lived wave events can reach large amplitudes of up to ~15 ms−1 and 8 K and 20 ms−1 and 10 K for the 16- and 5-day wave, respectively. A clear seasonal and short-term variability are observed in the 16- and 5-day planetary wave amplitudes. The 16-day wave reaches largest amplitude in winter and is also present in summer, but with smaller amplitudes. The 5-day wave reaches largest amplitude in winter and in late summer. An inter-annual variability of the amplitude of the planetary waves are evident in the four years of observations. Some 32 episodes of large-amplitude wave occurrence are investigated and the temperature and wind amplitudes, AT and AW, are found to be related by, AT=0.49 AW and AT=0.58 AW for the 16- and 5-day wave, respectively.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-13
    Description: We demonstrate improvements in CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations) dust extinction retrievals over northern Africa and Europe when corrections are applied regarding the Saharan dust lidar ratio assumption, the separation of the dust portion in detected dust mixtures, and the averaging scheme introduced in the Level 3 CALIPSO product. First, a universal, spatially constant lidar ratio of 58 sr instead of 40 sr is applied to individual Level 2 dust-related backscatter products. The resulting aerosol optical depths show an improvement compared with synchronous and collocated AERONET (Aerosol Robotic Network) measurements. An absolute bias of the order of −0.03 has been found, improving on the statistically significant biases of the order of −0.10 reported in the literature for the original CALIPSO product. When compared with the MODIS (Moderate-Resolution Imaging Spectroradiometer) collocated aerosol optical depth (AOD) product, the CALIPSO negative bias is even less for the lidar ratio of 58 sr. After introducing the new lidar ratio for the domain studied, we examine potential improvements to the climatological CALIPSO Level 3 extinction product: (1) by introducing a new methodology for the calculation of pure dust extinction from dust mixtures and (2) by applying an averaging scheme that includes zero extinction values for the nondust aerosol types detected. The scheme is applied at a horizontal spatial resolution of 1° × 1° for ease of comparison with the instantaneous and collocated dust extinction profiles simulated by the BSC-DREAM8b dust model. Comparisons show that the extinction profiles retrieved with the proposed methodology reproduce the well-known model biases per subregion examined. The very good agreement of the proposed CALIPSO extinction product with respect to AERONET, MODIS and the BSC-DREAM8b dust model makes this dataset an ideal candidate for the provision of an accurate and robust multiyear dust climatology over northern Africa and Europe.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-10
    Description: Atmospheric temperatures and winds in the mesosphere and lower thermosphere have been measured simultaneously using the Aura satellite and a meteor radar at Bear Lake Observatory (42° N, 111° W), respectively. The data presented in this study is from the interval March 2008 to July 2011. The mean winds observed in the summer-time over Bear Lake Observatory show the meridional winds to be equatorward at meteor heights during April−August and to reach monthly-mean velocities of −12 m s−1. The mean winds are closely related to temperatures in this region of the atmosphere and in the summer the coldest mesospheric temperatures occur about the same time as the strongest equatorward meridional winds. The zonal winds are eastward through most of the year and in the summer strong eastward zonal wind shears of up to ~4.5 m s−1 km−1 are present. However, westward winds are observed at the upper heights in winter and sometimes during the equinoxes. Considerable inter-annual variability is observed in the mean winds and temperatures. Comparisons of the observed winds with URAP and HWM-07 reveal some large differences. Our radar zonal wind observations are generally more eastward than predicted by the URAP model zonal winds. Considering the radar meridional winds, in comparison to HWM-07 our observations reveal equatorward flow at all meteor heights in the summer whereas HWM-07 suggests that only weakly equatorward, or even poleward flows occur at the lower heights. However, the zonal winds observed by the radar and modelled by HWM-07 are generally similar in structure and strength. Signatures of the 16- and 5-day planetary waves are clearly evident in both the radar-wind data and Aura-temperature data. Short-lived wave events can reach large amplitudes of up to ~15 m s−1 and 8 K and 20 m s−1 and 10 K for the 16- and 5-day waves, respectively. A clear seasonal and short-term variability are observed in the 16- and 5-day planetary wave amplitudes. The 16-day wave reaches largest amplitude in winter and is also present in summer, but with smaller amplitudes. The 5-day wave reaches largest amplitude in winter and in late summer. An inter-annual variability in the amplitude of the planetary waves is evident in the four years of observations. Some 41 episodes of large-amplitude wave occurrence are identified. Temperature and wind amplitudes for these episodes, AT and AW, that passed the Student T-test were found to be related by, AT = 0.34 AW and AT = 0.62 AW for the 16- and 5-day wave, respectively.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-10-31
    Description: We present a parametric study of electrostatic waves generated with angular frequencies 2 wp,e and - wp,e by an electron beam using a one-dimensional Vlasov code. We consider a background plasma consisting of three components: two electron populations (a background and a beam) and a proton population (with a mass ratio mp /me = 400 and temperatures Tp = Te = T ). We investigate the influence of different beam parameters on the nonlinear growth rate of waves with angular frequency 2wp,e and compare the results of the numerical experiments to theoretical predictions. We also examine the presence and excitation of back propagating waves with angular frequency wp,e. A discussion on the possible generating mechanisms of the different modes observed in these simulations is also presented.
    Print ISSN: 1023-5809
    Electronic ISSN: 1607-7946
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-11
    Description: The composition and abundance of algal pigments provide information on characteristics of a phytoplankton community in respect to its photoacclimation, overall biomass, and taxonomic composition. Particularly, these pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by High Performance Liquid Chromatography (HPLC) techniques to filtered water samples. This method, like others when water samples have to be analysed in the laboratory, is time consuming and therefore only a limited number of data points can be obtained. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an Empirical Orthogonal Function (EOF) analysis to remote sensing reflectance data derived from ship-based hyper-spectral underwater radiometric and from multispectral satellite data (using the MERIS Polymer product developed by Steinmetz et al., 2011) measured in the Eastern Tropical Atlantic. Subsequently we developed statistically linear models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results, show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multi-spectral resolution is chosen (i.e. eight bands similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. The fitted statistical model constructed on the satellite reflectance data as input was applied to one month of MERIS Polymer data to predict the concentration of those pigment groups for the whole Eastern Tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., 〈 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photo-physiology.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-02-03
    Description: The composition and abundance of algal pigments provide information on phytoplankton community characteristics such as photoacclimation, overall biomass and taxonomic composition. In particular, pigments play a major role in photoprotection and in the light-driven part of photosynthesis. Most phytoplankton pigments can be measured by high-performance liquid chromatography (HPLC) techniques applied to filtered water samples. This method, as well as other laboratory analyses, is time consuming and therefore limits the number of samples that can be processed in a given time. In order to receive information on phytoplankton pigment composition with a higher temporal and spatial resolution, we have developed a method to assess pigment concentrations from continuous optical measurements. The method applies an empirical orthogonal function (EOF) analysis to remote-sensing reflectance data derived from ship-based hyperspectral underwater radiometry and from multispectral satellite data (using the Medium Resolution Imaging Spectrometer – MERIS – Polymer product developed by Steinmetz et al., 2011) measured in the Atlantic Ocean. Subsequently we developed multiple linear regression models with measured (collocated) pigment concentrations as the response variable and EOF loadings as predictor variables. The model results show that surface concentrations of a suite of pigments and pigment groups can be well predicted from the ship-based reflectance measurements, even when only a multispectral resolution is chosen (i.e., eight bands, similar to those used by MERIS). Based on the MERIS reflectance data, concentrations of total and monovinyl chlorophyll a and the groups of photoprotective and photosynthetic carotenoids can be predicted with high quality. As a demonstration of the utility of the approach, the fitted model based on satellite reflectance data as input was applied to 1 month of MERIS Polymer data to predict the concentration of those pigment groups for the whole eastern tropical Atlantic area. Bootstrapping explorations of cross-validation error indicate that the method can produce reliable predictions with relatively small data sets (e.g., 〈 50 collocated values of reflectance and pigment concentration). The method allows for the derivation of time series from continuous reflectance data of various pigment groups at various regions, which can be used to study variability and change of phytoplankton composition and photophysiology.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-11-27
    Description: We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable-resolution grids using the shallow-water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance, implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution-dependent coefficient. For the spectral element method with variable-resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity is constructed so that, for regions of uniform resolution, it matches the traditional constant-coefficient hyperviscosity. With the tensor hyperviscosity, the large-scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications in which long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-07-19
    Description: The relationship between phytoplankton assemblages and the associated optical properties of the water body is important for the further development of algorithms for large-scale remote sensing of phytoplankton biomass and the identification of phytoplankton functional types (PFTs), which are often representative for different biogeochemical export scenarios. Optical in-situ measurements aid in the identification of phytoplankton groups with differing pigment compositions and are widely used to validate remote sensing data. In this study we present results from an interdisciplinary cruise aboard the R/V Polarstern along a north-to-south transect in the eastern Atlantic Ocean in November 2008. Phytoplankton community composition was identified using a broad set of in-situ measurements. Water samples from the surface and the depth of maximum chlorophyll concentration were analyzed by high performance liquid chromatography (HPLC), flow cytometry, spectrophotometry and microscopy. Simultaneously, the above- and underwater light field was measured by a set of high spectral resolution (hyperspectral) radiometers. An unsupervised cluster algorithm applied to the measured parameters allowed us to define bio-optical provinces, which are compared to ecological provinces proposed elsewhere in the literature. This method has the potential to become an automated approach where satellite data could be used to identify shifting boundaries of established ecological provinces or to track exceptions from the rule to improve our understanding of the biogeochemical cycles in the ocean.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-05-21
    Description: We present results from a study of canopy-atmosphere fluxes of carbon dioxide from 2007 to 2009 above a site in Wytham Woods, an ancient temperate broadleaved deciduous forest in southern England. Gap-filled Net Ecosystem Exchange (NEE) data were partitioned into Gross Primary Productivity (GPP) and ecosystem respiration (Re) and analysed on daily, monthly and annual timescales. Over the continuous 24 month study period annual GPP was estimated at 21.1 Mg C ha−1 yr−1 and Re at 19.8 Mg C ha−1 yr−1; Net Ecosystem Productivity (NEP) was 1.2 Mg C ha−1 yr−1. These estimates are very consistent with independent bottom-up estimates derived from Net Primary Productivity (NPP) and flux chamber measurements in 2008 (GPP=20.3±1.0 Mg C ha−1 yr−1, Re=18.9±1.7 Mg C ha−1 yr−1, biomass increment =~1.4 Mg C ha−1 yr−1). Interannual variability of seasonal NEP was predominantly driven by changes in ecosystem respiration, whereas GPP remained similar for equivalent months in different years. Although solar radiation was the largest influence on daytime CO2 fluxes (R2=0.53 for the summer months), interannual variation in Re appeared to be driven by temperature. Our findings suggest that this ancient woodland site is currently a substantial sink for carbon, resulting from continued growth that is probably a legacy of past management practices abandoned over 40 years ago. Our GPP and Re values are generally higher than other broadleaved temperate deciduous woodlands and may represent the influence of the UK's maritime climate, or the particular species composition of this site. The carbon sink value of Wytham Woods supports the protection and management of temperate deciduous woodlands (including those managed for conservation rather than silvicultural objectives) as a strategy to mitigate atmospheric carbon dioxide increases.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...