ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (27)
Collection
Years
  • 1
    Publication Date: 2007-02-05
    Description: We present Multi AXis-Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of tropospheric BrO carried out on board the German research vessel Polarstern during the Antarctic winter 2006. Polarstern entered the area of first year sea ice around Antarctica on 24 June 2006 and stayed within this area until 15 August 2006. For the period when the ship cruised inside the first year sea ice belt, enhanced BrO concentrations were almost continuously observed. One interesting exception appeared on 7 July 2006, when the sun elevation angle was 〈 about –2.8° indicating that for low insulation the photolysis of Br2 and/or HOBr is too slow to provide sufficient amounts of Br radicals. Before and after the period inside the first year sea ice belt, typically low BrO concentrations were observed. Our observations indicate that enhanced BrO concentrations around Antarctica exist about one month earlier than observed by satellite instruments. The small BrO concentrations over the open oceans indicate a short atmospheric lifetime of activated bromine without contact to areas of first year sea ice. From detailed radiative transfer simulations we find that MAX-DOAS observations are about one order of magnitude more sensitive to near-surface BrO than satellite observations. In contrast to satellite observations the MAX-DOAS sensitivity hardly decreases for large solar zenith angles and is almost independent from the ground albedo. Thus this technique is very well suited for observations in polar regions close to the solar terminator. Furthermore, combination of both techniques could yield additional information on the vertical distribution of BrO in the lower troposphere.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-10-06
    Description: The results of a comparison exercise of radiative transfer models (RTM) of various international research groups for Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) viewing geometry are presented. In contrast to previous comparison exercises, box-air-mass-factors (box-AMFs) for various atmospheric height layers were modelled, which describe the sensitivity of the measurements as a function of altitude. In addition, radiances were calculated allowing the identification of potential errors, which might be overlooked if only AMFs are compared. Accurate modelling of radiances is also a prerequisite for the correct interpretation of satellite observations, for which the received radiance can strongly vary across the large ground pixels, and might be also important for the retrieval of aerosol properties as a future application of MAX-DOAS. The comparison exercises included different wavelengths and atmospheric scenarios (with and without aerosols). The results were systematically investigated with respect to their dependence on the telescope's elevation angle and the azimuth angle. For both dependencies, a strong and systematic influence of aerosol scattering was found indicating that from MAX-DOAS observations also information on atmospheric aerosols can be retrieved. During the various iterations of the exercises, the results from all models showed a substantial convergence, and the final data sets agreed for most cases within about 5%. Larger deviations were found for cases with low atmospheric optical depth, for which the photon path lengths along the line of sight of the instrument can become very large. The differences occurred between models including full spherical geometry and those using only plane parallel approximation indicating that the correct treatment of the Earth's sphericity becomes indispensable. The modelled box-AMFs constitute an universal data base for the calculation of arbitrary (total) AMFs by simple convolution with a given trace gas concentration profile. Together with the modelled radiances and the specified settings for the various exercises, they can serve as test cases for future RTM developments.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-04-13
    Description: The results of a comparison exercise of radiative transfer models (RTM) of various international research groups for Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) viewing geometry are presented. Besides the assessment of the agreement between the different models, a second focus of the comparison was the systematic investigation of the sensitivity of the MAX-DOAS technique under various viewing geometries and aerosol conditions. In contrast to previous comparison exercises, box-air-mass-factors (box-AMFs) for different atmospheric height layers were modelled, which describe the sensitivity of the measurements as a function of altitude. In addition, radiances were calculated allowing the identification of potential errors, which might be overlooked if only AMFs are compared. Accurate modelling of radiances is also a prerequisite for the correct interpretation of satellite observations, for which the received radiance can strongly vary across the large ground pixels, and might be also important for the retrieval of aerosol properties as a future application of MAX-DOAS. The comparison exercises included different wavelengths and atmospheric scenarios (with and without aerosols). The strong and systematic influence of aerosol scattering indicates that from MAX-DOAS observations also information on atmospheric aerosols can be retrieved. During the various iterations of the exercises, the results from all models showed a substantial convergence, and the final data sets agreed for most cases within about 5%. Larger deviations were found for cases with low atmospheric optical depth, for which the photon path lengths along the line of sight of the instrument can become very large. The differences occurred between models including full spherical geometry and those using only plane parallel approximation indicating that the correct treatment of the Earth's sphericity becomes indispensable. The modelled box-AMFs constitute an universal data base for the calculation of arbitrary (total) AMFs by simple convolution with a given trace gas concentration profile. Together with the modelled radiances and the specified settings for the various exercises, they can serve as test cases for future RTM developments.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-02-22
    Description: The direct detection of glyoxal (CHOCHO), the smallest α-dicarbonyl, in the open atmosphere by active differential optical absorption spectroscopy (DOAS) has recently been demonstrated (Volkamer et al., 2005a) and triggered the very recent successful detection of CHOCHO from space (Kurosu et al., 2005; Wittrock et al., 2006; Beirle et al., 2006). Here we report the first comprehensive analysis of CHOCHO by passive multi axis differential optical absorption spectroscopy (MAX-DOAS). CHOCHO and NO2 slant column measurements were conducted at the Massachusetts Institute of Technology (MIT), Cambridge, USA, and on board the research vessel Ron Brown in the Gulf of Maine as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 campaign. For a day with nearly clear sky conditions, radiative transfer modeling was employed to derive diurnal CHOCHO mixing ratios in the planetary boundary layer (PBL) for both sites. CHOCHO mixing ratios at MIT varied from 40 to 140 ppt, with peak values observed around noon. Mixing ratios over the Gulf of Maine were found to be up to 2.5 times larger than at MIT. The CHOCHO-to-NO2 ratio at MIT was
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-06-19
    Description: We present Multi AXis-Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of tropospheric BrO carried out on board the German research vessel Polarstern during the Antarctic winter 2006. Polarstern entered the area of first year sea ice around Antarctica on 24 June 2006 and stayed within this area until 15 August 2006. For the period when the ship cruised inside the first year sea ice belt, enhanced BrO concentrations were almost continuously observed. Outside the first year sea ice belt, typically low BrO concentrations were found. Based on back trajectory calculations we find a positive correlation between the observed BrO differential slant column densities (ΔSCDs) and the duration for which the air masses had been in contact with the sea ice surface prior to the measurement. While we can not completely rule out that in several cases the highest BrO concentrations might be located close to the ground, our observations indicate that the maximum BrO concentrations might typically exist in a (possibly extended) layer around the upper edge of the boundary layer. Besides the effect of a decreasing pH of sea salt aerosol with altitude and therefore an increase of BrO with height, this finding might be also related to vertical mixing of air from the free troposphere with the boundary layer, probably caused by convection over the warm ocean surface at polynyas and cracks in the ice. Strong vertical gradients of BrO and O3 could also explain why we found enhanced BrO levels almost continuously for the observations within the sea ice. Based on our estimated BrO profiles we derive BrO mixing ratios of several ten ppt, which is slightly higher than many existing observations. Our observations indicate that enhanced BrO concentrations around Antarctica exist about one month earlier than observed by satellite instruments. From detailed radiative transfer simulations we find that MAX-DOAS observations are up to about one order of magnitude more sensitive to near-surface BrO than satellite observations. In contrast to satellite observations the MAX-DOAS sensitivity hardly decreases for large solar zenith angles and is almost independent from the ground albedo. Thus this technique is very well suited for observations in polar regions close to the solar terminator. For large periods of our measurements the solar elevation was very low or even below the horizon. For such conditions, most reactive Br-compounds might exist as Br2 molecules and ozone destruction and the removal of reactive bromine compounds might be substantially reduced.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-12-21
    Description: The aim of the work presented here was to detect BrO in the marine boundary layer over the Eastern North-Atlantic by Multi AXis-Differential Optical Absorption Spectroscopy (MAX-DOAS) of scattered sunlight. With this technique, information about the concentration and the vertical profile of trace gases in the atmosphere can be gained. BrO can be formed in the marine atmosphere by degradation of biogenic organohalogens or by oxidation of bromide in sea salt aerosol. BrO influences the chemistry in marine air in many ways, e.g. since it catalytically destroys ozone, changes the NO2/NO-ratio as well as the OH/HO2-ratio and oxidises DMS. However, the abundance and the significance of BrO in the marine atmosphere is not yet fully understood. We report on data collected during a ship cruise, which took place along the West African Coast in February 2007, within the framework of the Surface Ocean PRocesses in the ANthropocene project (SOPRAN). Tropospheric BrO could be detected during this cruise at peak mixing ratios of (10.2±3.7) ppt at an assumed layer height of 1 km on 18 February 2007. Furthermore, it was found that the mean BrO concentrations increased when cruising close to the African Coast suggesting that at least part of the BrO might have originated from there.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-12-01
    Description: We present the first detection of glyoxal (CHOCHO) over the remote tropical Pacific Ocean in the Marine Boundary Layer (MBL). The measurements were conducted by means of the University of Colorado Ship Multi-Axis Differential Optical Absorption Spectroscopy (CU SMAX-DOAS) instrument aboard the research vessel Ronald H. Brown. The research vessel was on a cruise in the framework of the VAMOS Ocean-Cloud-Atmosphere-Land Study – Regional Experiment (VOCALS-REx) and the Tropical Atmosphere Ocean (TAO) projects lasting from October 2008 through January 2009 (74 days at sea). The CU SMAX-DOAS instrument features a motion compensation system to characterize the pitch and roll of the ship and to compensate for ship movements in real time. We found elevated mixing ratios of up to 140 ppt CHOCHO located inside the MBL up to 3000 km from the continental coast over biologically active upwelling regions of the tropical Eastern Pacific Ocean. This is surprising since CHOCHO is very short lived (atmospheric life time ~2 h) and highly water soluble (Henry's Law constant H = 4.2 × 105 M/atm). This CHOCHO cannot be explained by transport of it or its precursors from continental sources. Rather, the open ocean must be a source for CHOCHO to the atmosphere. Dissolved Organic Matter (DOM) photochemistry in surface waters is a source for Volatile Organic Compounds (VOCs) to the atmosphere, e.g. acetaldehyde. The extension of this mechanism to very soluble gases, like CHOCHO, is not straightforward since the air-sea flux is directed from the atmosphere into the ocean. For CHOCHO, the dissolved concentrations would need to be extremely high in order to explain our gas-phase observations by this mechanism (40–70 μM CHOCHO, compared to ~0.01 μM acetaldehyde and 60–70 μM DOM). Further, while there is as yet no direct measurement of VOCs in our study area, measurements of the CHOCHO precursors isoprene, and/or acetylene over phytoplankton bloom areas in other parts of the oceans are too low (by a factor of 10–100) to explain the observed CHOCHO amounts. We conclude that our CHOCHO data cannot be explained by currently understood processes. Yet, it supports first global source estimates of 20 Tg/year CHOCHO from the oceans, which likely is a significant source of secondary organic aerosol (SOA). This chemistry is currently not considered by atmospheric models.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-30
    Description: Detailed comparisons of airborne CH2O measurements acquired by tunable diode laser absorption spectroscopy with steady state box model calculations were carried out using data from the 2006 INTEX-B and MILARGO campaign in order to improve our understanding of hydrocarbon oxidation processing. This study includes comparisons over Mexico (including Mexico City), the Gulf of Mexico, parts of the continental United States near the Gulf coast, as well as the more remote Pacific Ocean, and focuses on comparisons in the boundary layer. Select previous comparisons in other campaigns have highlighted some locations in the boundary layer where steady state box models have tended to underpredict CH2O, suggesting that standard steady state modeling assumptions might be unsuitable under these conditions, and pointing to a possible role for unmeasured hydrocarbons and/or additional primary emission sources of CH2O. Employing an improved instrument, more detailed measurement-model comparisons with better temporal overlap, up-to-date measurement and model precision estimates, up-to-date rate constants, and additional modeling tools based on both Lagrangian and Master Chemical Mechanism (MCM) runs, we have explained much of the disagreement between observed and predicted CH2O as resulting from non-steady-state atmospheric conditions in the vicinity of large pollution sources, and have quantified the disagreement as a function of plume lifetime (processing time). We show that in the near field (within ~4 to 6 h of the source), steady-state models can either over-or-underestimate observations, depending on the predominant non-steady-state influence. In addition, we show that even far field processes (10–40 h) can be influenced by non-steady-state conditions which can be responsible for CH2O model underestimations by ~20%. At the longer processing times in the 10 to 40 h range during Mexico City outflow events, MCM model calculations, using assumptions about initial amounts of high-order NMHCs, further indicate the potential importance of CH2O produced from unmeasured and multi-generation hydrocarbon oxidation compounds, particularly methylglyoxal, 3-hydroxypropanal, and butan-3-one-al.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-09-26
    Description: The University of Colorado Airborne Multi Axis Differential Optical Absorption Spectroscopy (CU AMAX-DOAS) instrument uses solar stray light remote sensing to detect and quantify multiple trace gases, including nitrogen dioxide (NO2), glyoxal (CHOCHO), formaldehyde (HCHO), water vapor (H2O), nitrous acid (HONO), iodine monoxide (IO), bromine monoxide (BrO), and oxygen dimers (O4) at multiple wavelengths (360 nm, 477 nm, 577 nm and 632 nm) simultaneously, and sensitively in the open atmosphere. The instrument is unique, in that it presents the first systematic implementation of MAX-DOAS on research aircraft, i.e. (1) includes measurements of solar stray light photons from nadir, zenith, and multiple elevation angles forward and below the plane by the same spectrometer/detector system, and (2) features a motion compensation system that decouples the telescope field of view (FOV) from aircraft movements in real-time (〈 0.35° accuracy). Sets of solar stray light spectra collected from nadir to zenith scans provide some vertical profile information within 2 km above and below the aircraft altitude, and the vertical column density (VCD) below the aircraft is measured in nadir view. Maximum information about vertical profiles is derived simultaneously for trace gas concentrations and aerosol extinction coefficients over similar spatial scales and with a vertical resolution of typically 250 m during aircraft ascent/descent. The instrument is described, and data from flights over California during the CalNex and CARES air quality field campaigns is presented. Horizontal distributions of NO2 VCDs (below the aircraft) maps are sampled with typically 1 km resolution, and show good agreement with two ground based CU MAX-DOAS instruments (slope 0.95 ± 0.09, R2 = 0.86). As a case study vertical profiles of NO2, CHOCHO, HCHO, and H2O mixing ratios and aerosol extinction coefficients, ε, at 477nm calculated from O4 measurements from a low approach at Brackett airfield inside the South Coast Air Basin (SCAB) are presented. These profiles contain ~ 12 degrees of freedom (DOF) over a 3.5 km altitude range, independent of signal-to-noise at which the trace gas is detected. The boundary layer NO2 concentration, and the integral aerosol extinction over height (aerosol optical depth, AOD) agrees well with nearby ground-based in-situ NO2 measurement, and AERONET station. The detection limits of NO2, CHOCHO, HCHO, ε360, ε477 from 30 s integration time spectra recorded forward of the plane are 5 ppt, 3 ppt, 100 ppt, 0.004 km−1, 0.002 km−1 in the free troposphere (FT), and 30 ppt, 16 ppt, 540 ppt, 0.012 km−1, 0.006 km−1 inside the boundary layer (BL), respectively. Mobile column observations of trace gases and aerosols are complimentary to in-situ observations, and help bridge the spatial scales probed by ground-based observations, satellites, and predicted by atmospheric models.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-05-20
    Description: We present a simulation of the global composition of the troposphere which includes the chemistry of halogens (Cl, Br, I). Building on previous work within the GEOS-Chem model we include emissions of inorganic iodine from the oceans, anthropogenic and biogenic sources of halogenated gases, gas phase chemistry, and a parameterised approach to heterogeneous halogen chemistry. Consistent with Schmidt et al. (2016) we do not include sea-salt de-bromination. Observations of halogen radicals (BrO, IO) are sparse but the model has some skill in reproducing these. IO shows both high and low biases in different datasets, BrO concentrations though appear to be modelled low. Comparisons to the very sparse observations dataset of reactive Cl species suggests the model represents a lower limit on impacts due to likely underestimates in emissions and therefore burdens. Inclusion of Cl, Br, I results in a general improvement in simulation of ozone (O3) concentrations, except in polar regions where the model now underestimates O3 concentrations. Halogen chemistry reduces the global tropospheric O3 burden by ∼ 15 %, with the O3 lifetime reducing from 26 days to 22 days. Global mean OH concentrations of 1.34 ×106 molecules cm−3 are 4.5 % lower than in a simulation without halogens, leading to an increase in the CH4 lifetime (6.5 %) due to OH oxidation from 7.48 years to 7.96 years. Oxidation of CH4 by Cl is small (∼ 1 %) but Cl oxidation of other VOCs (ethane, acetone, and propane) can be significant (∼ 9–18 %). Oxidation of VOCs by Br is smaller, representing 2.1 % of the loss of acetaldehyde and 0.6 % of the loss of formaldehyde.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...