ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Copernicus  (14)
Sammlung
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2012-03-07
    Beschreibung: We examine the spatial variation of magnetospheric energy transfer using a global magnetohydrodynamic (MHD) simulation (GUMICS-4) and a large data set of flux transfer events (FTEs) observed by the Cluster spacecraft. Our main purpose is to investigate whether it is possible to validate previous results on the spatial energy transfer variation from the GUMICS-4 simulation using the statistical occurrence of FTEs, which are manifestations of magnetospheric energy transfer. Previous simulation results have suggested that the energy transfer pattern at the magnetopause rotates according to the interplanetary magnetic field (IMF) orientation, and here we investigate whether a similar rotation is seen in the locations at which FTE signatures are observed. We find that there is qualitative agreement between the simulation and observed statistics, as the peaks in both distributions rotate as a function of the IMF clock angle. However, it is necessary to take into account the modulation of the statistical distribution that is caused by a bias towards in situ FTE signatures being observed in the winter hemisphere (an effect that has previously been predicted and observed in this data set). Taking this seasonal effect into account, the FTE locations support the previous simulation results and confirm the earlier prediction that the energy transfers in the plane of the IMF. In addition, we investigate the effect of the dipole orientation (both the dipole tilt angle and its orientation in the plane perpendicular to the solar wind flow) on the energy transfer spatial distribution. We find that the energy transfer occurs mainly in the summer hemisphere, and that the dayside reconnection region is located asymmetrically about the subsolar position. Finally, we find that the energy transfer is 10% larger at equinox conditions than at solstice, contributing to the discussion concerning the semiannual variation of magnetospheric dynamics (known as "the Russell-McPherron effect").
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2013-06-12
    Beschreibung: The polar cap boundary (PCB) location and motion in the nightside ionosphere has been studied by using measurements from the EISCAT radars and the MIRACLE magnetometers during a period of four substorms on 18 February 2004. The OMNI database has been used for observations of the solar wind and the Geotail satellite for magnetospheric measurements. In addition, the event was modelled by the GUMICS-4 MHD simulation. The simulation of the PCB location was in a rather good agreement with the experimental estimates at the EISCAT longitude. During the first three substorm expansion phases, neither the local observations nor the global simulation showed any poleward motions of the PCB, even though the electrojets intensified. Rapid poleward motions of the PCB took place only in the early recovery phases of the substorms. Hence, in these cases the nightside reconnection rate was locally higher in the recovery phase than in the expansion phase. In addition, we suggest that the IMF Bz component correlated with the nightside tail inclination angle and the PCB location with about a 17-min delay from the bow shock. By taking the delay into account, the IMF northward turnings were associated with dipolarizations of the magnetotail and poleward motions of the PCB in the recovery phase. The mechanism behind this effect should be studied further.
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2015-03-23
    Beschreibung: Understanding the altitude distribution of particle precipitation forcing is vital for the assessment of its atmospheric and climate impacts. However, the proportion of electron and proton forcing around the mesopause region during solar proton events is not always clear due to uncertainties in satellite-based flux observations. Here we use electron concentration observations of the European Incoherent Scatter Scientific Association (EISCAT) incoherent scatter radars located at Tromsø (69.58° N, 19.23° E) to investigate the contribution of proton and electron precipitation to the changes taking place during two solar proton events. The EISCAT measurements are compared to the results from the Sodankylä Ion and Neutral Chemistry Model (SIC). The proton ionization rates are calculated by two different methods – a simple energy deposition calculation and the Atmospheric Ionization Model Osnabrück (AIMOS v1.2), the latter providing also the electron ionization rates. Our results show that in general the combination of AIMOS and SIC is able to reproduce the observed electron concentration within ± 50% when both electron and proton forcing is included. Electron contribution is dominant above 90 km, and can contribute significantly also in the upper mesosphere especially during low or moderate proton forcing. In the case of strong proton forcing, the AIMOS electron ionization rates seem to suffer from proton contamination of satellite-based flux data. This leads to overestimation of modelled electron concentrations by up to 90% between 75–90 km and up to 100–150% at 70–75 km. Above 90 km, the model bias varies significantly between the events. Although we cannot completely rule out EISCAT data issues, the difference is most likely a result of the spatio-temporal fine structure of electron precipitation during individual events that cannot be fully captured by sparse in situ flux (point) measurements, nor by the statistical AIMOS model which is based upon these observations.
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2011-01-14
    Beschreibung: We investigate plasmoid formation in the magnetotail using the global magnetohydrodynamic (MHD) simulation GUMICS-4. Here a plasmoid implies a major reconfiguration of the magnetotail where a part of the tail plasma sheet is ejected downstream, in contrast to small Earthward-propagating plasmoids. We define a plasmoid based solely on the structure of the closed (connected to the Earth at both ends) magnetic field line region. In this definition a plasmoid is partly separated from the ordinary closed field line region by lobe field lines or interplanetary field lines resulting from lobe reconnection. We simulate an event that occurred on 18 February 2004 during which four intensifications of the auroral electroject (AE) index occurred in 8 h. Plasmoids form in the simulation for two of the four AE intensifications. Each plasmoid forms as a result of two consecutive large and fast rotations of the interplanetary magnetic field (IMF). In both cases the IMF rotates 180 degrees at 10 degrees per minute, first from southward to northward and some 15 min later from northward to southward. The other two AE intencifications however are not associated with a plasmoid formation. A plasmoid does not form if either the IMF rotation speed or the angular change of the rotation are small. We also present an operational definition for these fully connected plasmoids that enables their automatic detection in simulations. Finally, we show mappings of the plasmoid footpoints in the ionosphere, where they perturb the polar cap boundary in both hemispheres.
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2013-12-17
    Beschreibung: A novel hybrid-Vlasov code, Vlasiator, is developed for global simulations of magnetospheric plasma kinetics. The code is applied to model the collisionless bow shock on scales of the Earth's magnetosphere in two spatial dimensions and three dimensions in velocity space retrieving ion distribution functions over the entire foreshock and magnetosheath regions with unprecedented detail. The hybrid-Vlasov approach produces noise-free uniformly discretized ion distribution functions comparable to those measured in situ by spacecraft. Vlasiator can reproduce features of the ion foreshock and magnetosheath well known from spacecraft observations, such as compressional magnetosonic waves generated by backstreaming ion populations in the foreshock and mirror modes in the magnetosheath. An overview of ion distributions from various regions of the bow shock is presented, demonstrating the great opportunities for comparison with multi-spacecraft observations.
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2004-01-01
    Beschreibung: We examine the global energetics of the solar wind magnetosphere-ionosphere system by using the global MHD simulation code GUMICS-4. We show simulation results for a major magnetospheric storm (6 April 2000) and a moderate substorm (15 August 2001). The ionospheric dissipation is investigated by determining the Joule heating and precipitation powers in the simulation during the two events. The ionospheric dissipation is concentrated largely on the dayside cusp region during the main phase of the storm period, whereas the nightside oval dominates the ionospheric dissipation during the substorm event. The temporal variations of the precipitation power during the two events are shown to correlate well with the commonly used AE-based proxy of the precipitation power. The temporal variation of the Joule heating power during the substorm event is well-correlated with a commonly used AE-based empirical proxy, whereas during the storm period the simulated Joule heating is different from the empirical proxy. Finally, we derive a power law formula, which gives the total ionospheric dissipation from the solar wind density, velocity and magnetic field z-component and which agrees with the simulation result with more than 80% correlation. Key words. Ionosphere (modeling and forecasting) – Magnetospheric physics (magnetosphere-ionosphere interactions; storms and substorms)
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2005-12-23
    Beschreibung: This work investigates the nature and the role of magnetic reconnection in a global magnetohydrodynamic simulation of the magnetosphere. We use the Gumics-4 simulation to study reconnection that occurs in the near-Earth region of the current sheet in the magnetotail. We locate the current sheet surface and the magnetic x-line that appears when reconnection starts. We illustrate the difference between quiet and active states of the reconnection region: variations in such quantities as the current sheet thickness, plasma flow velocities, and Poynting vector divergence are strong. A characteristic feature is strong asymmetry caused by non-perpendicular inflows. We determine the reconnection efficiency by the net rate of Poynting flux into the reconnection region. The reconnection efficiency in the simulation is directly proportional to the energy flux into the magnetosphere through the magnetopause: about half of all energy flowing through the magnetosphere is converted from an electromagnetic into a mechanical form in the reconnection region. Thus, the tail reconnection that is central to the magnetospheric circulation is directly driven; the tail does not exhibit a cycle of storage and rapid release of magnetic energy. We find similar behaviour of the tail in both synthetic and real event runs.
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2006-12-21
    Beschreibung: We use the global MHD model GUMICS-4 to investigate the energy and mass transfer through the magnetopause and towards the closed magnetic field as a response to the interplanetary magnetic field (IMF) clock angle θ=arctan (BY/BZ), IMF magnitude, and solar wind dynamic pressure. We find that the mass and energy transfer at the magnetopause are different both in spatial characteristics and in response to changes in the solar wind parameters. The energy transfer follows best the sin2 (θ/2) dependence, although there is more energy transfer after large energy input, and the reconnection line follows the IMF rotation with a delay. There is no clear clock angle dependence in the net mass transfer through the magnetopause, but the mass transfer through the dayside magnetopause and towards the closed field occurs preferably for northward IMF. The energy transfer occurs through areas at the magnetopause that are perpendicular to the subsolar reconnection line. In contrast, the mass transfer occurs consistently along the reconnection line, both through the magnetopause and towards the closed field. Both the energy and mass transfer are enhanced in response to increased solar wind dynamic pressure, while increasing the IMF magnitude does not affect the transfer quantities as much.
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2006-11-22
    Beschreibung: The conventional definition of reconnection rate as the electric field parallel to an x-line is problematic in global MHD simulations for several reasons: the x-line itself may be hard to find in a non-trivial geometry such as at the magnetopause, and the lack of realistic resistivity modelling leaves us without reliable non-convective electric field. In this article we describe reconnection characterization methods that avoid those problems and are practical to apply in global MHD simulations. We propose that the reconnection separator line can be identified as the region where magnetic field lines of different topological properties meet, rather than by local considerations. The global convection associated with reconnection is then quantified by calculating the transfer of mass, energy or magnetic field across the boundary of closed and open field line regions. The extent of the diffusion region is determined from the destruction of electromagnetic energy, given by the divergence of the Poynting vector. Integrals of this energy conversion provide a way to estimate the total reconnection efficiency.
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2010-10-27
    Beschreibung: On 17 July 2005, an earthward bound north-south oriented magnetic cloud and its sheath were observed by the ACE, SoHO, and Wind solar wind monitors. A steplike increase of the solar wind dynamic pressure during northward interplanetary magnetic field conditions was related to the leading edge of the sheath. A timing analysis between the three spacecraft revealed that this front was not aligned with the GSE y-axis, but had a normal (−0.58,0.82,0). Hence, the first contact with the magnetosphere occurred on the dawnside rather than at the subsolar point. Fortunately, Cluster, Double Star 1, and Geotail happened to be distributed close to the magnetopause in this region, which made it possible to closely monitor the motion of the magnetopause. After the pressure front had impacted the magnetosphere, the magnetopause was perceived first to move inward and then immediately to correct the overshoot by slightly expanding again such that it ended up between the Cluster constellation with Double Star 1 inside the magnetosphere and Geotail in the magnetosheath. Coinciding with the inward and subsequent outward motion, the ground-based magnetic field at low latitudes was observed to first strengthen and then weaken. As the magnetopause position stabilised, so did the ground-based magnetic field intensity, settling at a level slightly higher than before the pressure increase. Altogether the magnetopause was moving for about 15 min after its first contact with the front. The high latitude ionospheric signature consisted of two parts: a shorter (few minutes) and less intense preliminary part comprised a decrease of AL and a negative variation of PC. A longer (about ten minutes) and more intense main part of the signature comprised an increase of AU and a positive variation of PC. Measurements from several ground-based magnetometer networks (210 MM CPMN, CANMOS, CARISMA, GIMA, IMAGE, MACCS, SuperMAG, THEMIS, TGO) were used to obtain information on the ionospheric E×B drift. Before the pressure increase, a configuration typical for the prevailing northward IMF conditions was observed at high latitudes. The preliminary signature coincided with a pair of reverse convection vortices, whereas during the main signature, mainly westward convection was observed at all local time sectors. Afterwards, the configuration preceding the pressure increase was recovered, but with slightly enhanced convection. Based on the timing analysis, the existence of the preliminary signature coincided with the passage of the oblique pressure front, whereas during the main signature the front was already well past Earth. The main signature existed during the time the magnetopause was observed to move. As the position stabilised, also the signature disappeared.
    Print ISSN: 0992-7689
    Digitale ISSN: 1432-0576
    Thema: Geologie und Paläontologie , Physik
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...