ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (1)
Collection
Years
  • 1
    Publication Date: 2018-06-06
    Description: To study the impact of fireworks (FW) events on air quality, aerosol particles from FW displays were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and collocated instruments during the Independence Day (July 4) holiday 2017 at Albany, NY, USA. Three FW events were identified through the potassium ion (K+) signals in the aerosol mass spectra. The largest FW event signal measured at two different sites was the Independence Day celebration in downtown Albany, with maximum hourly PM2.5 of about 55μgm−3 at the downtown site (approximately 1km from the FW launch location), and 33.3μgm−3 of non-refractory PM1 at the uptown site (approximately 8km downwind). The aerosol concentration peak measured at the uptown site occurred 2 hours later than at the downtown site. The Independence Day FW events resulted in significant increases in both organic and inorganic (K+, sulfate, chloride) chemical components. Positive Matrix Factorization (PMF) of organics mass spectra identified one FW related organic aerosol factor (FW-OOA) with a highly oxidized state. The intense emission of FW particles from the Independence Day celebration contributed about 79.0% (26.1μgm−3) of total PM1 (33.0μgm−3) measured at the uptown site during Independence Day FW event (07/04 23:00–07/05 02:00). Aerosol measurements and wind LiDAR measurements showed two distinct pollution sources, one from the Independence Day FW event in Albany, and the other transported from the northeast, potentially associated with another city’s FW events. This study highlights the significant influence of FW burning on fine aerosol mass concentration and chemical characteristics, which is useful in quantifying the impacts of FW on air pollution, at a time when more than usual people are clustered together and breathing the outdoor air.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...