ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-12-17
    Description: Climate change, including warmer winter temperatures, a shortened snowfall season, and more rain-on-snow events, threatens nordic skiing as a sport. In response, over-summer snow storage, attempted primarily using woodchips as a cover material, has been successfully employed as a climate change adaptation strategy by high-elevation and/or high-latitude ski centers in Europe and Canada. Such storage has never been attempted at a site that is both low elevation and midlatitude, and few studies have quantified storage losses repeatedly through the summer. Such data, along with tests of different cover strategies, are prerequisites to optimizing snow storage strategies. Here, we assess the rate at which the volume of two woodchip-covered snow piles (each ∼200 m3), emplaced during spring 2018 in Craftsbury, Vermont (45∘ N and 360 m a.s.l.), changed. We used these data to develop an optimized snow storage strategy. In 2019, we tested that strategy on a much larger, 9300 m3 pile. In 2018, we continually logged air-to-snow temperature gradients under different cover layers including rigid foam, open-cell foam, and woodchips both with and without an underlying insulating blanket and an overlying reflective cover. We also measured ground temperatures to a meter depth adjacent to the snow piles and used a snow tube to measure snow density. During both years, we monitored volume change over the melt season using terrestrial laser scanning every 10–14 d from spring to fall. In 2018, snow volume loss ranged from 0.29 to 2.81 m3 d−1, with the highest rates in midsummer and lowest rates in the fall; mean rates of volumetric change were 1.24 and 1.50 m3 d−1, 0.55 % to 0.72 % of initial pile volume per day. Snow density did increase over time, but most volume loss was the result of melting. Wet woodchips underlain by an insulating blanket and covered with a reflective sheet were the most effective cover combination for minimizing melt, likely because the aluminized surface reflected incoming short-wave radiation while the wet woodchips provided significant thermal mass, allowing much of the energy absorbed during the day to be lost by long-wave emission at night. The importance of the pile surface-area-to-volume ratio is demonstrated by 4-fold lower rates of volumetric change for the 9300 m3 pile emplaced in 2019; it lost
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-04
    Description: In order to understand better if and where erosion rates calculated using in situ 10Be are affected by contemporary changes in land use and attendant deep regolith erosion, we calculated erosion rates using measurements of in situ 10Be in quartz from 52 samples of river sediment collected from three tributaries of the Mekong River (median basin area = 46.5 km2). Erosion rates range from 12 to 209 mm kyr−1 with an area-weighted mean of 117 ± 49 mm kyr−1 (1 standard deviation) and median of 74 mm kyr−1. We observed a decrease in the relative influence of human activity from our steepest and least altered watershed in the north to the most heavily altered landscapes in the south. In the areas of the landscape least disturbed by humans, erosion rates correlate best with measures of topographic steepness. In the most heavily altered landscapes, measures of modern land use correlate with 10Be-estimated erosion rates but topographic steepness parameters cease to correlate with erosion rates. We conclude that, in some small watersheds with high rates and intensity of agricultural land use that we sampled, tillage and resultant erosion has excavated deeply enough into the regolith to deliver subsurface sediment to streams and thus raise apparent in situ 10Be-derived erosion rates by as much as 2.5 times over background rates had the watersheds not been disturbed.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-21
    Description: In order to understand better if and where long-term erosion rates calculated using in situ 10Be are affected by contemporary changes in land use and attendant deep regolith erosion, we calculated erosion rates using measurements of in situ 10Be in quartz from 52 samples of river sediment collected from three tributaries of the Mekong River (median basin area = 46.5 km2). Erosion rates range from 12–209 mm/kyr with an area-weighted mean of 117 ± 49 mm/kyr (1 standard deviation) and median of 74 mm/kyr. We observed a decrease in the relative influence of human activity from our steepest and least altered watershed in the north to the most heavily altered landscapes in the south. In the areas of the landscape least disturbed by humans, erosion rates correlate best with measures of topographic steepness. In the most heavily altered landscapes, measures of modern land use correlate with 10Be-estimated erosions rates but topographic steepness parameters cease to correlate with erosion rates. We conclude that in some small watersheds we sampled, those with high rates and intensity of agricultural land use, that tillage and resultant erosion has excavated deeply enough into the regolith to deliver subsurface sediment to streams and thus raise apparent in situ 10Be-derived erosion rates by as much as 2.5 times over background rates had the watersheds not been disturbed.
    Electronic ISSN: 2196-6338
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-11
    Description: Climate change, including warmer winter temperatures, a shortened snowfall season, and more rain-on-snow events, threatens nordic skiing as a sport. In response, over-summer snow storage, attempted primarily using wood chip insulation, has been successfully employed as a climate change adaptation strategy by high elevation and/or high latitude ski centers in Europe and Canada. Such storage has never been attempted at low-elevation, mid-latitude sites nor have studies quantified snowmelt rate through the summer or correlated snow melt rate with environmental characteristics including ground and air temperature, humidity, wind, and solar radiation. Such data, along with tests of different insulation strategies, are needed to optimize snow storage strategies. Here, we assess the melt rates of two snow piles (each ~ 200 m3) emplaced during spring 2018 in Craftsbury, Vermont (45° N and 360 m asl). We monitored volume change over the melt season using terrestrial laser scanning. We continually logged air-to-snow temperature gradients under different insulating layers including rigid foam, open cell foam, and wood chips both with and without an underlying insulating blanket and an overlying reflective cover. We also measured ground temperatures to a meter depth both under and adjacent to the snow piles and used a snow tube to measure snow density. Snow volume of the two piles changed similarly over the summer, with minimum rates of change (−0.29 m3 day-1 and −0.88 m3 day-1) in September and maximum volumetric loss rates in July of −1.98 m3 day-1 and −2.81 m3 day-1. Snow density changed little over time indicating that most volume reduction was the result of melting. Wet wood chips underlain by an insulating blanket and covered with a reflective cover was the most effective combination for minimizing melt, likely because the surface reflected incoming shortwave radiation while the wet wood chips provided significant thermal mass, allowing much of the energy absorbed during the day to be lost as blackbody radiation at night. Together, the data we collected demonstrate the feasibility of over-summer snow storage even at mid latitudes and low altitudes and suggest efficient insulation strategies.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-19
    Description: The preservation of cosmogenic nuclides that accumulated during periods of prior exposure but were not subsequently removed by erosion or radioactive decay complicates interpretation of exposure, erosion, and burial ages used for a variety of geomorphological applications. In glacial settings, cold-based, non-erosive glacier ice may fail to remove inventories of inherited nuclides in glacially transported material. As a result, individual exposure ages can vary widely across a single landform (e.g., moraine) and exceed the expected or true depositional age. The surface processes that contribute to inheritance remain poorly understood, thus limiting interpretations of cosmogenic nuclide datasets in glacial environments. Here, we present a compilation of new and previously published exposure ages of multiple lithologies in local Last Glacial Maximum (LGM) and older Pleistocene glacial sediments in the McMurdo Sound region of Antarctica. Unlike most Antarctic exposure chronologies, we are able to compare exposure ages of local LGM sediments directly against an independent radiocarbon chronology of fossil algae from the same sedimentary unit that brackets the age of the local LGM between 12.3 and 19.6 ka. Cosmogenic exposure ages vary by lithology, suggesting that bedrock source and surface processes prior to, during, and after glacial entrainment explain scatter. 10Be exposure ages of quartz in granite, sourced from the base of the stratigraphic section in the Transantarctic Mountains, are scattered but young, suggesting that clasts entrained by sub-glacial plucking can generate reasonable apparent exposure ages. 3He exposure ages of pyroxene in Ferrar Dolerite, which crops out above outlet glaciers in the Transantarctic Mountains, are older, which suggests that clasts initially exposed on cliff faces and glacially entrained by rock fall carry inherited nuclides. 3He exposure ages of olivine in basalt from local volcanic bedrock in the McMurdo Sound region contain many excessively old ages but also have a bimodal distribution with peak probabilities that slightly pre-date and post-date the local LGM; this suggests that glacial clasts from local bedrock record local landscape exposure. With the magnitude and geological processes contributing to age scatter in mind, we examine exposure ages of older glacial sediments deposited by the most extensive ice sheet to inundate McMurdo Sound during the Pleistocene. These results underscore how surface processes operating in the Transantarctic Mountains are expressed in the cosmogenic nuclide inventories held in Antarctic glacial sediments.
    Print ISSN: 2628-3697
    Electronic ISSN: 2628-3719
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...