ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8)
  • Copernicus  (8)
Collection
  • Articles  (8)
Years
Topic
  • 1
    Publication Date: 2017-07-25
    Description: A ground-based high-resolution Fourier transform spectrometer (FTS) station has been established in Hefei, China to remotely measure CO2, CO and other greenhouse gases based on near-infrared solar absorption spectra. Total column measurements of atmospheric CO2 and CO were successfully obtained from July 2014 to April 2016. The spectra collected with an InSb detector in the first year were compared with those collected by an InGaAs detector from July 2015, demonstrating that InGaAs spectra have better signal-to-noise ratios and rms of spectral fitting residuals relative to InSb spectra. Consequently, the measurement precision of the retrieved XCO2 and XCO for InGaAs spectra is superior to InSb spectra, with about 0.04 and 0.09 % for XCO2, and 1.07 and 2.00 % for XCO within clear-sky days respectively. Daily and monthly averages of column-averaged dry air mole fraction of CO2 show a clear seasonal cycle, while the daily and monthly averages of XCO displayed no seasonal variation. Also, we analysed the relationship of the anomalies of XCO and XCO2, found that the correlations are only observable for individual days, and the data under different prevailing wind conditions during the observations displayed weak correlation. The observations based on the high-resolution FTS were also compared with the temporally coinciding measurements taken with a low-resolution solar FTS instrument, the EM27/SUN. Ratioing the daily averaged XCO2 of EM27 and FTS gives an overall calibration factor of 0.996 ± 0.001. We also compared ground-based observations from the Tsukuba TCCON station with our observations, the results showing that the variation in phase and seasonal amplitude of XCO2 are similar to our results, but the variation of XCO in Tsukuba is quite different from our data in Hefei. To further evaluate our retrieved data, we made use of satellite measurements. The direct comparison of our observations with the Greenhouse Gases Observing Satellite (GOSAT) data shows good agreement of daily median XCO2, with a bias of −0.52 ppm and standard deviation of 1.63 ppm. The correlation coefficient (R2) is 0.79 for daily median XCO2 between our FTS and GOSAT observations. Daily median Orbiting Carbon Observatory 2 (OCO-2) data produce a positive bias of 0.81 ppm and standard deviation of 1.73 ppm relative to our ground-based data. Our daily median XCO2 also show strong correlation with OCO-2 data, with correlation coefficient (R2) of 0.83. Although there were a limited number of data during the observations due to instrument downtime and adverse weather, the results confirm the suitability of the observatory for ground-based long-term measurements of greenhouse gases with high precision and accuracy, and fulfil the requirements of the Total Carbon Column Observing Network (TCCON).
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-10-11
    Description: The seasonal evolution of O3 and its photochemical production regime in a polluted region of eastern China between 2014 and 2017 has been investigated using observations. We used tropospheric ozone (O3), carbon monoxide (CO), and formaldehyde (HCHO, a marker of VOCs (volatile organic compounds)) partial columns derived from high-resolution Fourier transform spectrometry (FTS); tropospheric nitrogen dioxide (NO2, a marker of NOx (nitrogen oxides)) partial column deduced from the Ozone Monitoring Instrument (OMI); surface meteorological data; and a back trajectory cluster analysis technique. A broad O3 maximum during both spring and summer (MAM/JJA) is observed; the day-to-day variations in MAM/JJA are generally larger than those in autumn and winter (SON/DJF). Tropospheric O3 columns in June are 1.55×1018 molecules cm−2 (56 DU (Dobson units)), and in December they are 1.05×1018 molecules cm−2 (39 DU). Tropospheric O3 columns in June were ∼50 % higher than those in December. Compared with the SON/DJF season, the observed tropospheric O3 levels in MAM/JJA are more influenced by the transport of air masses from densely populated and industrialized areas, and the high O3 level and variability in MAM/JJA is determined by the photochemical O3 production. The tropospheric-column HCHO∕NO2 ratio is used as a proxy to investigate the photochemical O3 production rate (PO3). The results show that the PO3 is mainly nitrogen oxide (NOx) limited in MAM/JJA, while it is mainly VOC or mixed VOC–NOx limited in SON/DJF. Statistics show that NOx-limited, mixed VOC–NOx-limited, and VOC-limited PO3 accounts for 60.1 %, 28.7 %, and 11 % of days, respectively. Considering most of PO3 is NOx limited or mixed VOC–NOx limited, reductions in NOx would reduce O3 pollution in eastern China.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-18
    Description: A precise knowledge of ozone seasonal evolution and photochemical production regime in polluted troposphere in China has important policy implications for ozone pollution controls especially in megacities where ozone pollution is common throughout the year. In this study, we used tropospheric ozone, CO and HCHO columns derived from high resolution Fourier transform infrared spectrometry (FTS) in Hefei, China, tropospheric NO2 columns deduced from overpass Ozone Monitoring Instrument (OMI), surface meteorological data, and a back trajectory cluster analysis technique to investigate ozone seasonal evolution and photochemical production regime in eastern China from 2014–2017. A pronounced seasonal cycle for tropospheric ozone is captured by FTS, where high levels of tropospheric ozone occurs in spring and summer, and low levels of tropospheric ozone occurs in autumn and winter. Day-to-day variations in spring and summer are in most cases larger than those in autumn and winter. At the same time, it shows that the tropospheric ozone roughly increases over time at the first half year and reaches the maximum in June, and then it decreases over time at the second half year. Tropospheric ozone columns in June are, on average, 0.5×1018 molecules*cm−2 (47.6 %) higher than those in December which has a mean value of 1.05×1018 molecules*cm−2. The OMI time series shows similar behaviour. The measured features can basically be reproduced by GEOS-Chem and WRF-Chem data but with slight shifts in the timing of the seasonal maximum. Back trajectories analysis shows that: air pollutions in megacities in central-southern China, northwest China, and the key pollution area, i.e., Yangtze River Delta area in eastern China, dominates the contributions to the observed tropospheric ozone levels, while the contributions from the other two key pollution areas, i.e., Beijing-Tianjin-Hebei in north China and Pearl River Delta in south China, are very small; Air masses generated from polluted areas have more transportations to the observed area in spring and summer than in autumn and winter, and hence have more contributions to the observed tropospheric ozone levels. Correlations between tropospheric ozone and meteorological data disclosed that spring and summer is more favorable to photochemical ozone production than in autumn and winter. Finally, the HCHO/NO2 ratio is used as a proxy to investigate the chemical sensitivity of ozone production (PO3). The results show that the PO3 is mainly NOx limited in summer, while it is mainly VOC or mix VOC-NOx limited in winter. Statistics show that NOx limited, mix VOC-NOx limited, and VOC limited PO3 accounts for 60.1 %, 28.7 %, and 11 %, respectively.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-21
    Description: SO2 variability over a large concentration range and interferences from other gases have been major limitations in industrial SO2 emission monitoring. This study demonstrates accurate industrial SO2 emission monitoring through a portable multichannel gas analyzer with an optimized retrieval algorithm. The proposed analyzer features a large dynamic measurement range and correction of interferences from other coexisting infrared absorbers such as NO, CO, CO2, NO2, CH4, HC, N2O, and H2O. The multichannel gas analyzer measures 11 different wavelength channels simultaneously to correct several major problems of an infrared gas analyzer including system drift, conflict of sensitivity, interferences among different infrared absorbers, and limitation of measurement range. The optimized algorithm uses a third polynomial instead of a constant factor to quantify gas-to-gas interference. Measurement results show good performance in the linear and nonlinear ranges, thereby solving the problem that the conventional interference correction is restricted by the linearity of the intended and interfering channels. The results imply that the measurement range of the developed multichannel analyzer can be extended to the nonlinear absorption region. The measurement range and accuracy are evaluated through experimental laboratory calibration. Excellent agreement was achieved, with a Pearson correlation coefficient (r2) of 0.99977 with a measurement range from approximately 5 to 10 000 ppmv and a measurement error of less than 2 %. The instrument was also deployed for field measurement. Emissions from three different factories were measured. The emissions of these factories have been characterized by different coexisting infrared absorbers, covering a wide range of concentration levels. We compared our measurements with commercial SO2 analyzers. Overall, good agreement was achieved.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-12-03
    Description: Observations of stable isotopes of water vapor provide important information for water cycle. The volume mixing ratios (VMR) of H2O (XH2O) and HDO (XHDO) have been retrieved based on a high-resolution ground-based Fourier transform infrared spectroscopy (FTIR) at Hefei site, and the isotopic composition δD was calculated. Time series of XH2O were compared with the Greenhouse gases Observing Satellite (GOSAT) data, showing a good agreement. The daily averaged δD ranges from −17.02 ‰ to −282.3 ‰ between September 2015 and September 2016. Also, the relationships of meteorological parameters with stable isotopologue were analyzed. δD values showed an obvious positive correlation with temperature and ln(XH2O) and a weak correlation with relative humidity. Further, 51.35 % of airmass at Hefei site comes from the southeast of China, and the main potential sources of δD are in the east of China over the observation period based on the back trajectories model. Furthermore, the δD values of evapotranspiration were calculated based on Keeling plot. Observations of the stable isotopes of water vapor by high-resolution ground-based FTIR provide information on study of the variation of the atmospheric water vapor at Hefei site.
    Electronic ISSN: 2193-0872
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-08
    Description: A ground-based high resolution Fourier Transform Spectrometer (FTS) station has been established in Hefei, China to remotely measure CO2, CO and other trace gases based on near-infrared solar absorption spectra. Total columns of atmospheric CO2 and CO have been successfully measured from July 2014 to April 2016. Daily and monthly average column-averaged dry air mole fraction of CO2 showed a clear seasonal cycle, while the daily and monthly average of XCO displayed no seasonal variation. The spectra collected with an InSb detector in the first year were compared with those collected by an InGaAs detector from July 2015, demonstrating that InGaAs spectra have better signal-to-noise ratios and RMS spectral fitting residuals relative to InSb spectra. Consequently, the measurement precision of the retrieved XCO2 and XCO for InGaAs spectra is superior to InSb spectra, with about 0.04 % and 0.09 % for XCO2, 1.07 % and 2.00 % for XCO within clear sky days, respectively. We analyzed the relationship of daily average XCO2 and XCO on seasonal scale, found that although there was very weak correlation between them in summer and fall, there existed strong correlation in winter and spring. The CO2/CO correlation slope was 126.62 and 94.32 ppm/ppm in winter and spring for 2014–2015 and 2015–2016, respectively. The direct comparison of our observations with GOSAT data shows good agreement of daily average and monthly average XCO2, with biases of -0.64 ppm and -0.49 ppm, and standard deviations of 1.27 ppm and 1.12 ppm, respectively. The correlation coefficient (R2) is 0.87 and 0.92 for daily and monthly average XCO2 between our FTS and GOSAT observations, respectively. Daily average OCO-2 data produce a positive bias of 1.00 ppm and standard deviation of 1.92 ppm relative to our ground-based data, and the monthly average OCO-2 data give a bias of 1.07 ppm and standard deviation of 1.62 ppm. Our daily and monthly average XCO2 also show strong correlation with OCO-2 data, with correlation coefficient (R2) of 0.81 and 0.85, respectively. Although there were a limited number of data during the observations due to instrument failure and adverse weather, the results confirm the suitability of the observatory for long term measurements of greenhouse gases with high precision and accuracy.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-27
    Description: The major air pollutant emissions have decreased, and the overall air quality has substantially improved across China in recent years as a consequence of active clean air policies for mitigating severe air pollution problems. As key precursors of formaldehyde (HCHO) and ozone (O3), the volatile organic compounds (VOCs) in China are still increasing due to the lack of mitigation measures for VOCs. In this study, we investigated the drivers of HCHO variability from 2015 to 2019 over Hefei, eastern China, by using ground-based high-resolution Fourier transform infrared (FTIR) spectroscopy and GEOS-Chem model simulation. Seasonal and interannual variabilities of HCHO over Hefei were analyzed and hydroxyl (OH) radical production rates from HCHO photolysis were evaluated. The relative contributions of emitted and photochemical sources to the observed HCHO were analyzed by using ground-level carbon monoxide (CO) and Ox (O3 + nitrogen oxide (NO2)) as tracers for emitted and photochemical HCHO, respectively. Contributions of emission sources from various categories and geographical regions to the observed HCHO summertime enhancements were determined by using a series of GEOS-Chem sensitivity simulations. The column-averaged dry air mole fractions of HCHO (XHCHO) reached a maximum monthly mean value of 1.1 ± 0.27 ppbv in July and a minimum monthly mean value of 0.4 ± 0.11 ppbv in January. The XHCHO time series from 2015 to 2019 over Hefei showed a positive change rate of 2.38 ± 0.71 % per year. The photochemical HCHO is the dominant source of atmospheric HCHO over Hefei for most of the year (68.1 %). In the studied years, the HCHO photolysis was an important source of OH radicals over Hefei during all sunlight hours of both summer and winter days. The oxidations of both methane (CH4) and nonmethane VOCs (NMVOCs) dominate the HCHO production over Hefei and constitute the main driver of its summertime enhancements. The NMVOC-related HCHO summertime enhancements were dominated by the emissions within eastern China. The observed increasing change rate of HCHO from 2015 to 2019 over Hefei was attributed to the increase in photochemical HCHO resulting from increasing change rates of both CH4 and NMVOC oxidations, which overwhelmed the decrease in emitted HCHO. This study provides a valuable evaluation of recent VOC emissions and regional photochemical capacity in China. In addition, understanding the sources of HCHO is a necessary step for tackling air pollution in eastern China and mitigating the emissions of pollutants.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-08-06
    Description: Ethane (C2H6) is an important greenhouse gas and plays a significant role in tropospheric chemistry and climate change. This study first presents and then quantifies the variability, sources, and transport of C2H6 over densely populated and highly industrialized eastern China using ground-based high-resolution Fourier transform infrared (FTIR) remote sensing along with atmospheric modeling techniques. We obtained a retrieval error of 6.21 ± 1.2 (1σ)% and degrees of freedom (DOFS) of 1.47 ± 0.2 (1σ) in the retrieval of C2H6 tropospheric column-averaged dry-air mole fraction (troDMF) over Hefei, eastern China (32∘ N, 117∘ E; 30 ma.s.l.). The observed C2H6 troDMF reached a minimum monthly mean value of 0.36 ± 0.26 ppbv in July and a maximum monthly mean value of 1.76 ± 0.35 ppbv in December, and showed a negative change rate of −2.60 ± 1.34 % yr−1 from 2015 to 2020. The dependencies of C2H6 troDMF on meteorological and emission factors were analyzed using generalized additive models (GAMs). Generally, both meteorological and emission factors have positive influences on C2H6 troDMF in the cold season (December–January–February/March–April–May, DJF/MAM) and negative influences on C2H6 troDMF in the warm season (June–July–August/September–October–November, JJA/SON). GEOS-Chem chemical model simulation captured the observed C2H6 troDMF variability and was, thus, used for source attribution. GEOS-Chem model sensitivity simulations concluded that the anthropogenic emissions (fossil fuel plus biofuel emissions) and the natural emissions (biomass burning plus biogenic emissions) accounted for 48.1 % and 39.7 % of C2H6 troDMF variability over Hefei, respectively. The observed C2H6 troDMF variability mainly results from the emissions within China (74.1 %), where central, eastern, and northern China dominated the contribution (57.6 %). Seasonal variability in C2H6 transport inflow and outflow over the observation site is largely related to the midlatitude westerlies and the Asian monsoon system. Reduction in C2H6 abundance from 2015 to 2020 mainly results from the decrease in local and transported C2H6 emissions, which points to air quality improvement in China in recent years.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...