ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-20
    Description: Advancements in radar technology are increasing our ability to detect earth surface deformation in permafrost environments. In this paper we use satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) to describe the growth of a previously unreported pingo in the Tuktoyaktuk Coastlands. High-resolution RADARSAT-2 imagery (2011–2014) analyzed with the Multidimensional Small Baseline Subset (MSBAS) DInSAR revealed a maximum 2.7 cm yr−1 of domed uplift located in a drained lake basin. Observed changes in elevation were modeled as a 348 m × 290 m uniformly loaded elliptical plate with clamped edge. Model results suggest that this feature is one of the largest diameter pingos in the region that is presently growing. Analysis of historical aerial photographs showed that ground uplift at this location initiated sometime between 1935 and 1951 following lake drainage. Uplift is largely due to the growth of intrusive ice, because the 9 % expansion of pore water associated with permafrost aggradation into saturated sands is not sufficient to explain the observed short- and long-term deformation rates. The modeled thickness of permafrost using the Northern Ecosystem Soil Temperature (NEST) was consistent with the maximum height of this feature and the 1972–2014 elevation changes estimated from aerial photographs, suggesting that permafrost aggradation is resulting in the freezing a sub-pingo water lens. Seasonal variation in the uplift rate seen in the DInSAR data also matches the modeled seasonal pattern in the deepening rate of freezing front. This study demonstrates that interferometric satellite radar can successfully contribute to understanding the dynamics of terrain uplift in response to permafrost aggradation and ground ice development in remote polar environments, and highlights possible application of detecting deformation of Martian landscapes. However, our DInSAR data did not show clear growth at other smaller pingos in contrast with field studies performed mainly before the 1990s. Further investigation of this apparent discrepancy may help define limitations of our processing methodology and DInSAR data.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...