ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-03
    Description: High concentration of fine particles (PM2.5), the primary concern about air quality in China, is believed to closely relate to China's large consumption of coal. In order to quantitatively identify the contributions of coal combustion in different sectors to ambient PM2. 5, we developed an emission inventory for the year 2013 using up-to-date information on energy consumption and emission controls, and we conducted standard and sensitivity simulations using the chemical transport model GEOS-Chem. According to the simulation, coal combustion contributes 22 µg m−3 (40 %) to the total PM2. 5 concentration at national level (averaged in 74 major cities) and up to 37 µg m−3 (50 %) in the Sichuan Basin. Among major coal-burning sectors, industrial coal burning is the dominant contributor, with a national average contribution of 10 µg m−3 (17 %), followed by coal combustion in power plants and the domestic sector. The national average contribution due to coal combustion is estimated to be 18 µg m−3 (46 %) in summer and 28 µg m−3 (35 %) in winter. While the contribution of domestic coal burning shows an obvious reduction from winter to summer, contributions of coal combustion in power plants and the industrial sector remain at relatively constant levels throughout the year.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-07
    Description: India is currently experiencing degraded air quality, and future economic development will lead to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015–2050, under specific pathways of diffusion of cleaner and more energy-efficient technologies. The impacts of individual source sectors on PM2.5 concentrations were assessed through systematic simulations of spatially and temporally resolved particulate matter concentrations, using the GEOS-Chem model, followed by population-weighted aggregation to national and state levels. We find that PM2.5 pollution is a pan-India problem, with a regional character, and is not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 annual standard (40 µg m−3). Sources related to human activities were responsible for the largest proportion of the present-day population exposure to PM2.5 in India. About 60 % of India's mean population-weighted PM2.5 concentrations come from anthropogenic source sectors, while the remainder are from other sources, windblown dust and extra-regional sources. Leading contributors are residential biomass combustion, power plant and industrial coal combustion and anthropogenic dust (including coal fly ash, fugitive road dust and waste burning). Transportation, brick production and distributed diesel were other contributors to PM2.5. Future evolution of emissions under regulations set at current levels and promulgated levels caused further deterioration of air quality in 2030 and 2050. Under an ambitious prospective policy scenario, promoting very large shifts away from traditional biomass technologies and coal-based electricity generation, significant reductions in PM2.5 levels are achievable in 2030 and 2050. Effective mitigation of future air pollution in India requires adoption of aggressive prospective regulation, currently not formulated, for a three-pronged switch away from (i) biomass-fuelled traditional technologies, (ii) industrial coal-burning and (iii) open burning of agricultural residue. Future air pollution is dominated by industrial process emissions, reflecting larger expansion in industrial, rather than residential energy demand. However, even under the most active reductions envisioned, the 2050 mean exposure, excluding any impact from windblown mineral dust, is estimated to be nearly 3 times higher than the WHO Air Quality Guideline.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-09-09
    Description: High concentration of fine particles (PM2.5), the primary concern about air quality in China, is believed to closely relate to China’s large consumption of coal. In order to quantitatively identify the contributions of coal combustion in different sectors to ambient PM2.5, we developed an emission inventory for the year 2013 using up-to-date information on energy consumption and emission controls, and conducted standard and sensitivity simulations using the chemical transport model GEOS-Chem. According to the simulation, coal combustion contributes 22 μg m−3 (40 %) to the total PM2.5 concentration at national level (averaged in 74 major cities), and up to 37 μg m−3 (50 %) in Sichuan Basin. Among major coal-burning sectors, industrial coal burning is the dominant contributor with a national average contribution of 10 μg m−3 (17 %), followed by coal combustion in power plants and domestic sector. The national average contribution due to coal combustion is estimated to be 18 μg m−3 (46 %) in summer and 28 μg m−3 (35 %) in winter. While the contribution of domestic coal burning shows an obvious reduction from winter to summer, contributions of coal combustion in power plants and industrial sector remain at relatively constant levels through out the year.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-12-13
    Description: India currently experiences degraded air quality, with future economic development leading to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015–2050, under specific pathways of diffusion of cleaner and more energy efficiency technologies. The impacts of individual source-sectors on PM2.5 concentrations were assessed through GEOS-Chem model simulations of spatially and temporally resolved particulate matter concentrations, followed by population-weighted aggregation to national and state levels. PM2.5 pollution is a pan-India problem, with a regional character, not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 standard (40 µg/m3). Future evolution of emissions under current regulation or under promulgated or proposed regulation, yield deterioration in future air-quality in 2030 and 2050. Only under a scenario where more ambitious measures are introduced, promoting a total shift away from traditional biomass technologies and a very large shift (80–85 %) to non-fossil electricity generation was an overall reduction in PM2.5 concentrations below 2015 levels achieved. In this scenario, concentrations in 20 states and six union territories would fall below the national standard. However, even under this ambitious scenario, 10 states (including Delhi) would fail to comply with the national standard through to 2050. Under present day (2015) emissions, residential biomass fuel use for cooking and heating is the largest single sector influencing outdoor air pollution across most of India. Agricultural residue burning is the next most important source, especially in north-west and north India, while in eastern and peninsular India, coal burning in thermal power plants and industry are important contributors. The relative influence of anthropogenic dust and total dust is projected to increase in all future scenarios, largely from decreases in the influence of other PM2.5 sources. Overall, the findings suggest a large regional background of PM2.5 pollution (from residential biomass, agricultural residue burning and power plant and industrial coal), underlying that from local sources (transportation, brick kiln, distributed diesel) in highly polluted areas.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...