ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-20
    Description: This study reviews and synthesises existing information generated within the SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) deep drilling project. The four main aims of the project are to infer (i) the age and origin of Lake Ohrid (Former Yugoslav Republic of Macedonia/Republic of Albania), (ii) its regional seismotectonic history, (iii) volcanic activity and climate change in the central northern Mediterranean region, and (iv) the influence of major geological events on the evolution of its endemic species. The Ohrid basin formed by transtension during the Miocene, opened during the Pliocene and Pleistocene, and the lake established de novo in the still relatively narrow valley between 1.9 and 1.3 Ma. The lake history is recorded in a 584 m long sediment sequence, which was recovered within the framework of the International Continental Scientific Drilling Program (ICDP) from the central part (DEEP site) of the lake in spring 2013. To date, 54 tephra and cryptotephra horizons have been found in the upper 460 m of this sequence. Tephrochronology and tuning biogeochemical proxy data to orbital parameters revealed that the upper 247.8 m represent the last 637 kyr. The multi-proxy data set covering these 637 kyr indicates long-term variability. Some proxies show a change from generally cooler and wetter to drier and warmer glacial and interglacial periods around 300 ka. Short-term environmental change caused, for example, by tephra deposition or the climatic impact of millennial-scale Dansgaard–Oeschger and Heinrich events are superimposed on the long-term trends. Evolutionary studies on the extant fauna indicate that Lake Ohrid was not a refugial area for regional freshwater animals. This differs from the surrounding catchment, where the mountainous setting with relatively high water availability provided a refuge for temperate and montane trees during the relatively cold and dry glacial periods. Although Lake Ohrid experienced significant environmental change over the last 637 kyr, preliminary molecular data from extant microgastropod species do not indicate significant changes in diversification rate during this period. The reasons for this constant rate remain largely unknown, but a possible lack of environmentally induced extinction events in Lake Ohrid and/or the high resilience of the ecosystems may have played a role.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-01
    Description: This study reviews and synthesises existing information generated within the SCOPSCO ("Scientific Collaboration on Past Speciation Conditions in Lake Ohrid") deep drilling project. The four main aims of the project are to infer (i) the age and origin of Lake Ohrid (Former Yugoslav Republic of Macedonia/Republic of Albania), (ii) its regional seismotectonic history, (iii) volcanic activity and climate change in the central northern Mediterranean region, and (iv) the drivers of biodiversity and endemism. The Ohrid basin formed by transtension during the Miocene, opened during the Pliocene and Pleistocene, and the lake established de novo in the still relatively narrow valley between 1.9 and 1.3 Myr ago. The lake history is recorded in a 584 m long sediment sequence, which was recovered within the framework of the International Continental Scientific Drilling Program (ICDP) from the central part (DEEP site) of the lake in spring 2013. To date, 50 tephra and crypto-tephra horizons have been found in the upper 460 m of this sequence. Tephrochronology and tuning biogeochemical proxy data to orbital parameters revealed that the upper 247.8 m represent the last 637 kyr. The multi-proxy dataset covering these 637 kyr indicates long-term variability, with a change from cooler and wetter to drier and warmer glacial and interglacial periods around 300 ka. Short-term environmental change caused, for example, by tephra deposition or the climatic impact of millennial-scale Dansgaard-Oeschger and Heinrich events are superimposed on the long-term trends. Evolutionary studies on the extant fauna indicate that Lake Ohrid was not a refugial area for regional freshwater animals. This differs from the surrounding catchment, where the mountainous setting with relatively high water availability provided a refugial area for temperate and montane trees during the relatively cold and dry glacial periods. Although Lake Ohrid experienced significant environmental change over the last 637 kyr, preliminary molecular data from extant microgastropod species do not indicate significant changes in diversification rate during this period. The reasons for this constant rate remain largely unknown, but a possible lack of environmentally induced extinction events in Lake Ohrid and/or the high resilience of the ecosystems may have played a role.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-13
    Description: Detailed, stratigraphically well-constrained environmental reconstructions are available for Paleocene and Eocene strata at a range of sites in the southwest Pacific Ocean (New Zealand and East Tasman Plateau; ETP) and Integrated Ocean Discovery Program (IODP) Site U1356 in the south of the Australo-Antarctic Gulf (AAG). These reconstructions have revealed a large discrepancy between temperature proxy data and climate models in this region, suggesting a crucial error in model, proxy data or both. To resolve the origin of this discrepancy, detailed reconstructions are needed from both sides of the Tasmanian Gateway. Paleocene–Eocene sedimentary archives from the west of the Tasmanian Gateway have unfortunately remained scarce (only IODP Site U1356), and no well-dated successions are available for the northern sector of the AAG. Here we present new stratigraphic data for upper Paleocene and lower Eocene strata from the Otway Basin, southeast Australia, on the (north)west side of the Tasmanian Gateway. We analyzed sediments recovered from exploration drilling (Latrobe-1 drill core) and outcrop sampling (Point Margaret) and performed high-resolution carbon isotope geochemistry of bulk organic matter and dinoflagellate cyst (dinocyst) and pollen biostratigraphy on sediments from the regional lithostratigraphic units, including the Pebble Point Formation, Pember Mudstone and Dilwyn Formation. Pollen and dinocyst assemblages are assigned to previously established Australian pollen and dinocyst zonations and tied to available zonations for the SW Pacific. Based on our dinocyst stratigraphy and previously published planktic foraminifer biostratigraphy, the Pebble Point Formation at Point Margaret is dated to the latest Paleocene. The globally synchronous negative carbon isotope excursion that marks the Paleocene–Eocene boundary is identified within the top part of the Pember Mudstone in the Latrobe-1 borehole and at Point Margaret. However, the high abundances of the dinocyst Apectodinium prior to this negative carbon isotope excursion prohibit a direct correlation of this regional bio-event with the quasi-global Apectodinium acme at the Paleocene–Eocene Thermal Maximum (PETM; 56 Ma). Therefore, the first occurrence of the pollen species Spinizonocolpites prominatus and the dinocyst species Florentinia reichartii are here designated as regional markers for the PETM. In the Latrobe-1 drill core, dinocyst biostratigraphy further indicates that the early Eocene (∼ 56–51 Ma) sediments are truncated by a ∼ 10 Myr long hiatus overlain by middle Eocene (∼ 40 Ma) strata. These sedimentary archives from southeast Australia may prove key in resolving the model–data discrepancy in this region, and the new stratigraphic data presented here allow for detailed comparisons between paleoclimate records on both sides of the Tasmanian Gateway.
    Print ISSN: 0262-821X
    Electronic ISSN: 2041-4978
    Topics: Geosciences
    Published by Copernicus on behalf of Micropalaeontological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-31
    Description: We reconstruct the aquatic ecosystem interactions since the last interglacial period in the oldest, most diverse, hydrologically connected European lake system, by using palaeolimnological diatom and selected geochemistry data from Lake Ohrid “DEEP site” core and equivalent data from Lake Prespa core, Co1215. Driven by climate forcing, the lakes experienced two adaptive cycles during the last 92 ka: "interglacial and interstadial" and "glacial" cycle. The short-term ecosystems reorganizations, e.g. regime shifts within these cycles substantially differ between the lakes, as evident from the inferred amplitudes of variation. The deeper Lake Ohrid shifted between ultra oligo- and oligotrophic regimes in contrast to the much shallower Lake Prespa, which shifted from a deeper, (oligo-) mesotrophic to a shallower, eutrophic lake and vice versa. Due to the high level of ecosystem stability (e.g. trophic state, lake level), Lake Ohrid appears relatively resistant to external forcing, such as climate and environmental change. Recovering in a relatively short time from major climate change, Lake Prespa is a resilient ecosystem. At the DEEP site, the decoupling between the lakes' response to climate change is marked in the prolonged and gradual changes during the MIS 5/4 and 2/1 transitions. These response differences and the lakes' different physical and chemical properties may limit the influence of Lake Prespa on Lake Ohrid. Regime shifts of Lake Ohrid due to potential hydrological change in Lake Prespa are not evident in the data presented here. Moreover, a complete collapse of the ecosystems functionality and loss of their diatom communities did not happen in either lake for the period presented in the study.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-08
    Description: Lake Ohrid is located at the border between FYROM (Former Yugoslavian Republic of Macedonia) and Albania and formed during the latest phases of Alpine orogenesis. It is the deepest, the largest and the oldest tectonic lake in Europe. To better understand the paleoclimatic and paleoenvironmental evolution of Lake Ohrid, deep drilling was carried out in 2013 within the framework of the Scientific Collaboration on Past Speciation Conditions (SCOPSCO) project that was funded by the International Continental Scientific Drilling Program (ICDP). Preliminary results indicate that lacustrine sedimentation of Lake Ohrid started between 1.2 and 1.9 Ma ago. Here we present new pollen data (selected percentage and concentration taxa/groups) of the uppermost  ∼  200 m of the 569 m long DEEP core drilled in the depocentre of Lake Ohrid. The study is the fruit of a cooperative work carried out in several European palynological laboratories. The age model of this part of the core is based on 10 tephra layers and on tuning of biogeochemical proxy data to orbital parameters. According to the age model, the studied sequence covers the last  ∼  500 000 years at a millennial-scale resolution ( ∼  1.6 ka) and records the major vegetation and climate changes that occurred during the last 12 (13 only pro parte) marine isotope stages (MIS). Our results indicate that there is a general good correspondence between forested/non-forested periods and glacial–interglacial cycles of the marine isotope stratigraphy. The record shows a progressive change from cooler and wetter to warmer and drier interglacial conditions. This shift in temperature and moisture availability is visible also in vegetation during glacial periods. The period corresponding to MIS11 (pollen assemblage zone OD-10, 428–368 ka BP) is dominated by montane trees such as conifers. Mesophilous elements such as deciduous and semi-deciduous oaks dominate forest periods of MIS5 (PASZ OD-3, 129–70 ka BP) and MIS1 (PASZ OD-1, 14 ka BP to present). Moreover, MIS7 (PASZ OD-6, 245–190 ka) shows a very high interglacial variability, with alternating expansions of montane and mesophilous arboreal taxa. Grasslands (open vegetation formations requiring relatively humid conditions) characterize the earlier glacial phases of MIS12 (PASZ OD-12, 488–459 ka), MIS10 (corresponding to the central part of PASZ OD-10, 428–366 ka) and MIS8 (PASZ OD-7, 288–245 ka). Steppes (open vegetation formations typical of dry environments) prevail during MIS6 (OD-5 and OD-4, 190–129 ka) and during MIS4-2 (PASZ OD-2, 70–14 ka). Our palynological results support the notion that Lake Ohrid has been a refugium area for both temperate and montane trees during glacials. Closer comparisons with other long southern European and Near Eastern pollen records will be achieved through ongoing high-resolution studies.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-04-08
    Description: The mid-Pliocene Warm Period (mPWP, 3254–3025 ka) represents the most recent interval in Earth's history where atmospheric CO2 levels were similar to today. The reconstruction of sea surface temperatures (SSTs) and modeling studies have shown that global temperatures were 2–4 °C warmer than present. However, detailed reconstructions of marginal seas and/or coastal zones that enable linking climate evolution in the marine realm to that on the continents are lacking. This is in part due to the absence of precise age models for coastal zones, as they are generally dynamic systems with varying sediment and fresh water inputs. Here, we present a multi-proxy record of Pliocene climate change in the coastal Southern North Sea Basin (SNSB) based on the sedimentary record from borehole Hank, the Netherlands. The marginal marine setting of the Hank borehole during the late Pliocene provides an excellent opportunity to correlate marine and terrestrial signals, due to continental sediment input mainly from the proto-Rhine-Meuse river. We improve the existing low-resolution palynology-based age model for the Hank borehole using oxygen stable isotope measurements (δ18O) of the endobenthic foraminifera species Cassidulina laevigata, integrated with biochrono- and seismostratigraphy. Identification of hiatuses and freshwater effects in the record allows us to accurately isolate glacial-interglacial climate signals that can be linked to a reference global benthic δ18O stack. In tandem with the biostratigraphic age control this results in an age framework for the SNSB for the Late Pliocene (~ 3200–2800 ka). Our multi-proxy reconstruction for the mPWP shows a strong agreement between lipid biomarker and palynology-based terrestrial temperature proxies, which suggest a stable climate, 1–2 °C warmer than present. In the marine realm, however, biomarker-based SSTs show a large range of variation (10 °C). Nevertheless, the fluctuation is comparable to other SST records from the North Atlantic and Nordic Seas, suggesting that a common factor, most likely variations in the North Atlantic Current, exerted a strong influence over SSTs in the North Atlantic at this time.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-23
    Description: We assess the disputed phase relations between forcing and climatic response in the early Pleistocene with a spliced Gelasian (∼2.6–1.8 Ma) multi-proxy record from the southern North Sea basin. The cored sections couple climate evolution on both land and sea during the intensification of Northern Hemisphere glaciation (NHG) in NW Europe, providing the first well-constrained stratigraphic sequence of the classic terrestrial Praetiglian stage. Terrestrial signals were derived from the Eridanos paleoriver, a major fluvial system that contributed a large amount of freshwater to the northeast Atlantic. Due to its latitudinal position, the Eridanos catchment was likely affected by early Pleistocene NHG, leading to intermittent shutdown and reactivation of river flow and sediment transport. Here we apply organic geochemistry, palynology, carbonate isotope geochemistry, and seismostratigraphy to document both vegetation changes in the Eridanos catchment and regional surface water conditions and relate them to early Pleistocene glacial–interglacial cycles and relative sea level changes. Paleomagnetic and palynological data provide a solid integrated timeframe that ties the obliquity cycles, expressed in the borehole geophysical logs, to Marine Isotope Stages (MIS) 103 to 92, independently confirmed by a local benthic oxygen isotope record. Marine and terrestrial palynological and organic geochemical records provide high-resolution reconstructions of relative terrestrial and sea surface temperature (TT and SST), vegetation, relative sea level, and coastal influence. During the prominent cold stages MIS 98 and 96, as well as 94, the record indicates increased non-arboreal vegetation, low SST and TT, and low relative sea level. During the warm stages MIS 99, 97, and 95 we infer increased stratification of the water column together with a higher percentage of arboreal vegetation, high SST, and relative sea level maxima. The early Pleistocene distinct warm–cold alterations are synchronous between land and sea, but lead the relative sea level change by 3000–8000 years. The record provides evidence for a dominantly Northern Hemisphere-driven cooling that leads the glacial buildup and varies on the obliquity timescale. Southward migration of Arctic surface water masses during glacials, indicated by cool-water dinoflagellate cyst assemblages, is furthermore relevant for the discussion on the relation between the intensity of the Atlantic meridional overturning circulation and ice sheet growth.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-01-11
    Description: Mid-Oligocene to Early Miocene terrestrial palynomorphs from the New Jersey hinterland (eastern North America: IODP-Expedition 313) were analysed, using light microscopy and scanning electron microscopy, to infer altitudinal spatial and long-term temporal vegetation migration in context of global climate change. The mesophytic forest was the most widespread vegetation type in the hinterland, with Quercus (Group Quercus, Quercus/Lobatae and aff. Group Protobalanus) being the dominant taxon. Pollen grains of the extinct genus Eotrigonobalanus (Fagaceae) are documented. To infer possible topographic palaeovegetation movements during the selected time interval terrestrial palynomorphs were assigned to six vegetation units. Relative abundances of vegetation units show weak temporal and spatial fluctuations, with the sum of bisaccate pollen grains being most pronounced. Periodic changes in vegetation units suggest movements of the plant cover responding to orbital-scale glacial-interglacial changes of the Oligocene and early Miocene. Relative abundances of several taxa (e.g. Carya) did not change significantly during the Oligocene, but alterations are recognizable when compared with an already published late Middle Miocene record from the same area, probably indicating biotic responds to environment change. A pollen-based bioclimatic analysis with four standard parameters (mean annual temperature, mean temperatures of the coldest and warmest month, mean annual precipitation) was performed to reconstruct palaeoclimatic changes indicating weak fluctuations in temperature and precipitation.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-03-12
    Description: The mid-Piacenzian Warm Period (mPWP; 3264–3025 ka) represents the most recent interval in Earth's history where atmospheric CO2 levels were similar to today. The reconstruction of sea surface temperatures (SSTs) and climate modelling studies has shown that global temperatures were 2–4 ∘C warmer than present. However, detailed reconstructions of marginal seas and/or coastal zones, linking the coastal and continental climate evolution, are lacking. This is in part due to the absence of precise age models for coastal sedimentary successions, as they are generally formed by dynamic depositional systems with varying sediment and freshwater inputs. Here, we present a multi-proxy record of Pliocene climate change in the coastal southern North Sea basin (SNSB) based on the sedimentary record from borehole Hank, the Netherlands. The marginal marine setting of the Hank borehole during the late Pliocene provides an excellent opportunity to correlate marine and terrestrial signals due to continental sediment input mainly derived from the proto-Rhine–Meuse River. We improve the existing low-resolution palynology-based age model for the Hank borehole using stable oxygen and carbon isotope (δ18O and δ13C) measurements of the endobenthic foraminifera species Cassidulina laevigata, integrated with biochrono- and seismostratigraphy. Identification of hiatuses and freshwater effects in the record allows us to isolate glacial–interglacial climate signals in order to tune the endobenthic oxygen stable isotope record to a global benthic δ18O stack. This results in a tuned age framework for the SNSB for the late Pliocene (∼3190–2770 ka). Our multi-proxy climate reconstruction for the interval which covers part of the mPWP (∼3190–3000 ka) shows a strong agreement between lipid biomarker and palynology-based terrestrial temperature proxies, which suggest a stable climate, 1–2 ∘C warmer than present. In the marine realm, however, biomarker-based SSTs show a large range of variation (10 ∘C). Nevertheless, the fluctuation is comparable to other SST records from the North Atlantic and Nordic Seas, suggesting that a common factor, possibly ocean circulation, exerted a strong influence over SSTs in the North Atlantic and the North Sea at this time.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...