ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 155-162 
    ISSN: 0887-6266
    Keywords: polyimides ; reflectivity ; moisture absorption ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Water absorption in thin films (〈1000 Å) of a commercial polyimide was evaluated by monitoring dimensional changes induced by a humid environment. Film thickness was measured using x-ray reflectivity, which is a nondestructive technique offering angstrom resolution in the measurements of thin film or multilayer thickness. The effect of several variables on the absorption of moisture were monitored in polyimide films adhered to polished silicon substrates, including total dry film thickness, exposure time, and the contribution of a coupling agent. The percentage increase in film thickness due to moisture uptake is found to be a weak function of dry film thickness, decreasing as dry film thickness increases, and to be somewhat affected by the use of an interfacial coupling agent. The observed behavior points to the polymer/substrate interface as a strong factor controlling the absorption of moisture in the polyimide/silicon system, and is believed to reflect the presence of a highly moisture-saturated interfacial layer. A bilayer model is proposed, and the feasibility of using this model to describe the observed behavior is considered. Published 1998 John Wiley & Sons, Inc.This article is a US Government work and, as such, is in the public domain in the United States of America. J Polym Sci B: Polym Phys 36: 155-162, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 16 (1978), S. 1671-1683 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The thermodynamic treatment of crystallization phenomena in a prestretched rubber was undertaken. Emphasis was put on defining conditions for the thermodynamic stability of the extendedor folded-chain crystal structure. The extended-chain structure is found to be stable thermodynamically at temperatures higher than the isotropic melting point of un-cross-linked polymer Tm0 in the stretched state, while the folded chain one is not. Below Tm0, the stretch ratio of the network structure determines which crystal structure is more stable. The relation among the critical stretch ratio for the extended/folded crystalline structure transition, temperature, and molecular weight is also discussed. The crystallinity predicted by this work becomes zero at a temperature of Tmi, the isotropic melting point of a cross-linked system. The value of Tmi decreases with increasing cross-link density, and this is consistent with the experimental data reported in the literature.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-28
    Description: Agricultural intensification has contributed greatly to the sustained food supply of China's 1.3 billion population over the 30 year period during 1982–2011. Intensification has several and widely recognized negative environmental impacts including depletion of water resources, pollution of water bodies, greenhouse gas emissions and soil acidification. However, there have been few studies over this period on the impacts of intensification on soil organic carbon (SOC) at the regional level. The present study was conducted in Huantai county, a typical intensive farming region in Northern China, to analyze the temporal dynamics of SOC influenced by climate and farming practices. The results indicate that from 1982 to 2011, SOC content and stock in the 0–20 cm layer of the cropland increased from 7.8 ± 1.6 to 11.0 ± 2.3 g kg–1 (41%) and 21 ± 4.3 to 33.0 ± 7.0 Mg ha–1 (54%), respectively. The SOC stock (0–20 cm) of the farmland for the entire county increased from 0.75 to 1.2 Tg (59%). Correlation analysis revealed that incorporation of crop residues significantly increased SOC, while increase in the mean annual temperature decreased the SOC level. Therefore, agricultural intensification has increased crop productivity and contributed to SOC sequestration in Northern China. In the near future, more appropriate technologies and practices must be developed and implemented for a maintenance or enhancement of SOC in this region and elsewhere in Northern China, that also reduce non-CO2 greenhouse gas emissions, since the climate benefit from the additional SOC storage is estimated to be smaller than the negative climate impacts of N2O from N fertilizer additions.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-05
    Description: Agricultural intensification has contributed greatly to the sustained food supply of China's population of 1.3 billion over the 30-year period from 1982 to 2011. Intensification has several and widely recognized negative environmental impacts including depletion of water resources, pollution of water bodies, greenhouse gas emissions and soil acidification. However, there have been few studies over this period on the impacts of intensification on soil organic carbon (SOC) at the regional level. The present study was conducted in Huantai County, a typical intensive farming region in northern China, to analyze the temporal dynamics of SOC influenced by climate and farming practices. The results indicate that from 1982 to 2011, SOC content and density in the 0–20 cm layer of the cropland increased from 7.8 ± 1.6 to 11.0 ± 2.3 g kg−1 (41%) and from 21.4 ± 4.3 to 33.0 ± 7.0 Mg ha−1 (54%), respectively. The SOC stock (0–20 cm) of the farmland for the entire county increased from 0.75 to 1.2 Tg (59%). Correlation analysis revealed that incorporation of crop residues significantly increased SOC, while an increase in the mean annual temperature decreased the SOC level. Therefore, agricultural intensification has increased crop productivity and contributed to SOC sequestration in northern China. In the near future, more appropriate technologies and practices must be developed and implemented for a maintenance or enhancement of SOC in this region and elsewhere in northern China, which also reduce non-CO2 greenhouse gas emissions, since the climate benefit from the additional SOC storage is estimated to be smaller than the negative climate impacts of N2O from N fertilizer additions.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...