ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (6)
  • Wiley  (1)
  • 1
    Publication Date: 2017-03-15
    Description: In order to study global nitrogen (N) leaching from natural ecosystems under changing N deposition, climate, and atmospheric CO2, we performed a factorial model experiment for the period 1901–2006 with the N-enabled global terrestrial ecosystem model LPJ-GUESS. In eight global simulations we used either the true transient time series of N deposition, climate, and atmospheric CO2 as input, or kept combinations of these drivers constant at initial values. The results show that N deposition is globally the strongest driver of simulated N leaching, individually causing an increase of 88 % by 1997–2006, relative to pre-industrial conditions. Climate change led globally to a 31 % increase in N leaching, but the size and direction of change varied among global regions: leaching generally increased in regions with high soil organic carbon storage or high initial N status, and decreased in regions with a positive trend in vegetation productivity or decreasing precipitation. Rising atmospheric CO2 generally caused decreased N leaching (33 % globally), with strongest effects in regions with high productivity and N availability. All drivers combined resulted in a rise of N leaching by 73 % with strongest increases in Europe, eastern North America and South-East Asia, where N deposition rates are highest. Decreases in N leaching were predicted for the Amazon and Northern India. We further found that N loss by fire regionally is a large term in the N budget, associated lower N leaching, particularly in semi-arid biomes. Predicted global N leaching from natural lands rose from 13.6 Tg N yr−1 in 1901–1911 to 18.5 Tg N yr−1 in 1997–2006, accounting for land-use changes. Ecosystem N status (quantified as the reduction of vegetation productivity due to N limitation) shows a similar positive temporal trend but large spatial variability. Interestingly this variability is more strongly related to vegetation type than N input. Similarly, the relationship between N status and (relative) N leaching is highly variable due to confounding factors such as soil water fluxes, fire occurrence, and growing season length. Nevertheless, our results suggest that regions with very high N deposition rates are approaching a state of N saturation.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-12
    Description: To study global nitrogen (N) leaching from natural ecosystems under changing N deposition, climate, and atmospheric CO2, we performed a factorial model experiment for the period 1901–2006 with the N-enabled global terrestrial ecosystem model LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Simulator). In eight global simulations, we used either the true transient time series of N deposition, climate, and atmospheric CO2 as input or kept combinations of these drivers constant at initial values. The results show that N deposition is globally the strongest driver of simulated N leaching, individually causing an increase of 88 % by 1997–2006 relative to pre-industrial conditions. Climate change led globally to a 31 % increase in N leaching, but the size and direction of change varied among global regions: leaching generally increased in regions with high soil organic carbon storage and high initial N status, and decreased in regions with a positive trend in vegetation productivity or decreasing precipitation. Rising atmospheric CO2 generally caused decreased N leaching (33 % globally), with strongest effects in regions with high productivity and N availability. All drivers combined resulted in a rise of N leaching by 73 % with strongest increases in Europe, eastern North America and South-East Asia, where N deposition rates are highest. Decreases in N leaching were predicted for the Amazon and northern India. We further found that N loss by fire regionally is a large term in the N budget, associated with lower N leaching, particularly in semi-arid biomes. Predicted global N leaching from natural lands rose from 13.6 Tg N yr−1 in 1901–1911 to 18.5 Tg N yr−1 in 1997–2006, accounting for reductions of natural land cover. Ecosystem N status (quantified as the reduction of vegetation productivity due to N limitation) shows a similar positive temporal trend but large spatial variability. Interestingly, this variability is more strongly related to vegetation type than N input. Similarly, the relationship between N status and (relative) N leaching is highly variable due to confounding factors such as soil water fluxes, fire occurrence, and growing season length. Nevertheless, our results suggest that regions with very high N deposition rates are approaching a state of N saturation.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-29
    Description: Canopy nitrogen (N) concentration and content are linked to several vegetation processes and canopy N concentration is a state variable in global vegetation models with coupled carbon (C) and N cycles. While there is ample C data available to constrain the models, widespread N data are lacking. Remote sensing and vegetation indices have been used to detect canopy N concentration and canopy N content at the local scale in grasslands and forests. In this paper we conducted a regional case-study analysis investigating the relationship between the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) time series from ESA ENVISAT at 1 km spatial resolution and both canopy N concentration (%N) and canopy N content (g m−2) from a Mediterranean forests inventory in the region of Catalonia, NE of Spain. The relationships between the datasets were studied after resampling both datasets to lower spatial resolutions (20 km, 15 km, 10 km and 5 km) and at the initial higher spatial resolution of 1 km. The results at the higher spatial resolution yielded significant relationships between MTCI and both canopy N concentration and content, r2 = 0.32 and r2 = 0.17, respectively. We also investigated these relationships per plant functional type. While the relationship between MTCI and canopy N concentration was strongest for deciduous broadleaf and mixed plots (r2 = 0.25 and r2 = 0.47, respectively), the relationship between MTCI and canopy N content was strongest for evergreen needleleaf trees (r2 = 0.20). At the species level, canopy N concentration was strongly related to MTCI for European Beech plots (r2 = 0.71). These results present a new perspective on the application of MTCI time series for canopy N detection, ultimately leading towards the generation of canopy N maps that can be used to constrain global vegetation models. Keywords: vegetation index, MERIS, foliar nitrogen concentration, foliar nitrogen content, plant functional types, Mediterranean forest, remote sensing
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-05-07
    Description: Canopy nitrogen (N) concentration and content are linked to several vegetation processes. Therefore, canopy N concentration is a state variable in global vegetation models with coupled carbon (C) and N cycles. While there are ample C data available to constrain the models, widespread N data are lacking. Remotely sensed vegetation indices have been used to detect canopy N concentration and canopy N content at the local scale in grasslands and forests. Vegetation indices could be a valuable tool to detect canopy N concentration and canopy N content at larger scale. In this paper, we conducted a regional case-study analysis to investigate the relationship between the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) time series from European Space Agency (ESA) Envisat satellite at 1 km spatial resolution and both canopy N concentration (%N) and canopy N content (N g m−2, of ground area) from a Mediterranean forest inventory in the region of Catalonia, in the northeast of Spain. The relationships between the datasets were studied after resampling both datasets to lower spatial resolutions (20, 15, 10 and 5 km) and at the original spatial resolution of 1 km. The results at higher spatial resolution (1 km) yielded significant log–linear relationships between MTCI and both canopy N concentration and content: r2 = 0.32 and r2 = 0.17, respectively. We also investigated these relationships per plant functional type. While the relationship between MTCI and canopy N concentration was strongest for deciduous broadleaf and mixed plots (r2 = 0.24 and r2 = 0.44, respectively), the relationship between MTCI and canopy N content was strongest for evergreen needleleaf trees (r2 = 0.19). At the species level, canopy N concentration was strongly related to MTCI for European beech plots (r2 = 0.69). These results present a new perspective on the application of MTCI time series for canopy N detection.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-25
    Description: The Amazon rainforest evapotranspiration (ET) flux provides climate-regulating and moisture-provisioning ecosystem services through a moisture recycling system. The dense complex canopy and deep root system creates an optimum structure to provide large ET fluxes to the atmosphere, forming the source of precipitation. Extensive land use and land cover change (LULCC) from forest to agriculture in the arc of deforestation breaks this moisture recycling system. Crops such as soybean are planted in large homogeneous monocultures and the maximum rooting depth of these crops is far shallower than forest. This difference in rooting depth is key as forests can access deep soil moisture and show no signs of water stress during the dry season, while in contrast crops are highly seasonal with a growing season dependent on rainfall. As access to soil moisture is a limiting factor in vegetation growth, we hypothesised that if crops could access soil moisture, they would undergo less water stress and therefore would have higher evapotranspiration rates than crops which could not access soil moisture. We combined remote-sensing data with modelled groundwater table depth (WTD) to assess whether vegetation in areas with a shallow WTD had higher ET than vegetation in deep WTD areas. We randomly selected areas of forest, savanna, and crop with deep and shallow WTD and examined whether they differ on MODIS Evapotranspiration (ET), Land Surface Temperature (LST), and Enhanced Vegetation Index (EVI), from 2001 to 2012, annually and during transition periods between the wet and dry seasons. As expected, we found no differences in ET, LST, and EVI for forest vegetation between deep and shallow WTD, which because of their deep roots could access water and maintain evapotranspiration for moisture recycling during the entire year. We found significantly higher ET and lower LST in shallow WTD crop areas than in deep WTD during the dry season transition, suggesting that crops in deep WTD undergo higher water stress than crops in shallow WTD areas. The differences found between crop in deep and shallow WTD, however, are of low significance with regards to the moisture recycling system, as the difference resulting from conversion of forest to crop has an overwhelming influence (ET in forest is ≈2 mm d−1 higher than that in crops) and has the strongest impact on energy balance and ET. However, access to water during the transition between wet and dry seasons may positively influence growing season length in crop areas.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-18
    Description: The Amazon rainforest evapotranspiration (ET) flux provides climate regulating and moisture provisioning ecosystem services through a moisture recycling system. The dense complex canopy and deep root system creates an optimum structure to provide large ET fluxes to the atmosphere forming the source for precipitation. Extensive land use and land cover change (LULCC) from forest to agriculture in the arc of deforestation breaks this moisture recycling system. Crops such as soybean are planted in large homogeneous monocultures and the maximum rooting depth of these crops is far shallower than forest. This difference in rooting depth is key as forests can access deep soil moisture and show no signs of water stress during the dry season while in contrast crops are highly seasonal with a growing season dependant on rainfall. As access to soil moisture is a limiting factor in vegetation growth, we hypothesised that if crops could access soil moisture they would undergo less water stress and therefore would have higher evapotranspiration rates than crops which could not access soil moisture. We combined remote sensing data with modelled groundwater table depth (WTD) to assess whether vegetation in areas with a shallow WTD had higher ET than vegetation in deep WTD areas. We randomly selected areas of forest, savanna and crop with deep and shallow WTD and examined whether they differ on MODIS Evapotranspiration (ET), Land Surface Temperature (LST) and Enhanced Vegetation Index (EVI), from 2001 to 2012, annually and during transition periods between the wet and dry season. As expected, we found no differences in ET, LST, and EVI for forest vegetation between deep and shallow WTD, which because of their deep roots could access water and maintain evapotranspiration for moisture recycling during the entire year. We found significantly higher ET and lower LST in shallow WTD crop areas than in deep WTD during the dry season transition, suggesting that crops in deep WTD undergo higher water stress than crops in shallow WTD areas. The differences found between crop in deep and shallow WTD, however, are of low significance with regards the moisture recycling system as the difference resulting from conversion of forest to crop has an overwhelming influence (ET in forest is ≈ 2 mm day−1 higher than that in crops) and has the strongest impact on energy balance and ET. However, access to water during the transition between wet and dry seasons may positively influence growing season length in crop areas.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-07-28
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...