ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (12)
  • Copernicus  (7)
  • Wiley  (5)
  • Biology  (12)
Collection
  • Articles  (12)
  • 1
    Publication Date: 2019
    Description: Abstract Hydropower reservoirs are well‐known emitters of greenhouse gases to the atmosphere. This is due in part to seasonal water level fluctuations that transfer terrestrial C and N from floodplains to reservoirs. Partial pressures and fluxes of the greenhouse gases CH4, CO2, and N2O are also a function of in‐situ biological C and N cycling and overall ecosystem metabolism, which varies on a diel basis within inland waters. Thus, greenhouse gas emissions in hydropower reservoirs likely vary over seasonal and diel timescales with local hydrology and ecosystem metabolism. China's Three Gorges Reservoir is among the largest and newest in the world, with a floodplain that encompasses approximately one third of the reservoir area. We measured diel partial pressures and fluxes of greenhouse gases in ponds on the Three Gorges Floodplain. We repeated these measurements on the submerged floodplain following inundation by the Three Gorges Reservoir. During reservoir drawdown, CH4 ebullition comprised 60‐68% of emissions from floodplain ponds to the atmosphere. Using linear mixed effects modeling, we show that partial pressures of CH4 and CO2 and diffusive CO2 fluxes in floodplain ponds varied on a diel basis with in‐situ respiration. Floodplain inundation by the Three Gorges Reservoir significantly moderated areal CH4 diffusion and ebullition. Diel pCO2, pCH4, pN2O, and diffusive fluxes of CO2 on the submerged floodplain were also driven by in‐situ respiration. The drawdown/inundation cycle of the Three Gorges Reservoir therefore changes the magnitudes of aquatic greenhouse gas fluxes on its floodplain.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-04
    Description: The eastern China seas are one of the largest marginal seas in the world, where high primary productivity and phytoplankton blooms are often observed. However, to date, little is known about the spatial and temporal variability of phytoplankton blooms in these areas due to the difficulty of the monitoring of bloom events by field measurement. In this study, 14-yr time series of satellite ocean color data from the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite have been used to investigate the seasonal and inter-annual variability and long-term changes of phytoplankton blooms in the eastern China seas. We validated and calibrated the satellite-derive chlorophyll concentration in the eastern China seas based on extensive data sets from two large cruises. Overestimation of satellite-derive chlorophyll concentration caused by high water turbidity was found to be less than 10 μg L−1. This level can be used as a safe threshold for the identification of a phytoplankton bloom in a marginal sea with turbid waters. Annually, blooms mostly occur in the Changjiang Estuary and along the coasts of Zhejiang. The coasts of the northern Yellow Sea and Bohai Sea also have high-frequency blooms. The blooms have significant seasonal variation, with most of the blooms occurring in the spring (April–June) and summer (July–September). This study revealed a doubling in bloom intensity in the Yellow Sea and Bohai Sea during the past 14 yr (1998–2011), yet surprisingly, there has been no decadal increase or decrease of bloom intensity in despite of significant inter-annual variation in the Changjiang Estuary. The time series in situ datasets show that both the nitrate and phosphate concentrations increase more than twofold from 1998 to 2005. This might be the reason for the doubling of bloom intensity in the Yellow Sea and Bohai Sea. In addition, the ENSO and PDO can affect the inter-annual variation of bloom intensity in the eastern China seas.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-13
    Description: The air-sea exchanges of CO2 in the world's 165 estuaries and 87 continental shelves are evaluated. Generally and in all seasons, upper estuaries with salinities of less than two are strong sources of CO2 (39 ± 56 mol C m−2 yr−1, negative flux indicates that the water is losing CO2 to the atmosphere); mid-estuaries with salinities of between 2 and 25 are moderate sources (17.5 ± 34 mol C m−2 yr−1) and lower estuaries with salinities of more than 25 are weak sources (8.4 ± 14 mol C m−2 yr−1). With respect to latitude, estuaries between 23.5 and 50° N have the largest flux per unit area (63 ± 101 mmol C m−2 d−1); these are followed by mid-latitude estuaries (23.5–0° S: 44 ± 29 mmol C m−2 d−1; 0–23.5° N: 39 ± 55 mmol C m−2 d−1), and then regions north of 50° N (36 ± 91 mmol C m−2 d−1). Estuaries south of 50° S have the smallest flux per unit area (9.5 ± 12 molC m−2 d−1). Mixing with low-pCO2 shelf waters, water temperature, residence time and the complexity of the biogeochemistry are major factors that govern the pCO2 in estuaries but wind speed, seldom discussed, is critical to controlling the air-water exchanges of CO2. The total annual release of CO2 from the world's estuaries is now estimated to be 0.10 PgC yr−1, which is much lower than published values mainly because of the contribution of a considerable amount of heretofore unpublished or new data from Asia and the Arctic. The Asian data, although indicating high in pCO2, are low in sea-to-air fluxes because the wind speeds are lower than previously determined values, which rely heavily on data from Europe and North America, where pCO2 is lower but wind speeds are much higher, such that the CO2 fluxes are higher than in Asia. Newly emerged CO2 flux data in the Arctic reveal that estuaries there mostly absorb, rather than release CO2. Most continental shelves, and especially those at high latitude, are under-saturated in terms of CO2 and absorb CO2 from the atmosphere in all seasons. Shelves between 0° and 23.5° S are on average a weak source and have a small flux per unit area of CO2 to the atmosphere. Water temperature, the spreading of river plumes, upwelling, and biological production seem to be the main factors in determining pCO2 in the shelves. Wind speed, again, is critical because at high latitudes, the winds tend to be strong. Since the surface water pCO2 values are low, the air-to-sea fluxes are high in regions above 50° N and below 50° S. At low latitudes, the winds tend to be weak, so the sea-to-air CO2 flux is small. Overall, the world's continental shelves absorb 0.4 PgC yr−1 from the atmosphere.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1987-12-01
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of Ecological Society of America.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-03
    Description: A series of wildfires broke out in western Russia starting in late July of 2010. Harmful particulates and gases released into the local Russian atmosphere have been reported, as have possible negative consequences for the global atmosphere. In this study, an extremely hazy area and its transport trajectory on Russian wildfires were analysed using aerosol optical depth (AOD) images retrieved via the synergy method from Moderate Resolution Imaging Spectroradiometer (MODIS) data. In addition, we used trace gases (NO2 and SO2) and CO2 products measured using Ozone Monitoring Instrument (OMI) data, vertical distribution of AOD data retrieved from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data, the mass trajectory analyses, synoptic maps from a HYSPLIT model simulation and ground-based data, including AERONET (both AOD and Ångström exponent) data and PM2.5. First, an Optimal Smoothing (OS) scheme was used to develop more precise and reliable AOD data based on multiple competing predictions made using several AOD retrieval models; then, integrated AOD and PM2.5 data were related using a chemical transport model (GEOS-Chem), and the integrated AOD and visibility data were related using a 6S model. The results show that the PM2.5 concentration is 3–5 times the normal amount based on both satellite data and in situ values with peak daily mean concentrations of approximately 500 μg m−3. Also, the visibility of many parts of Russia, even Moscow, was less than 100 m; in some areas, the visibility was less than 50 m. Additionally, the possible impact on neighbouring countries due to the long-transport effect was also analysed during 31 July and 15 August 2010. A comparison of the satellite aerosol products and ground observations from the neighbouring countries suggests that wildfires in western Russian have had little impact on most European and Asian countries, the exceptions being Finland, Estonia, Ukraine and Kyrgyzstan. However, a possible impact on the Arctic region was also identified; such an effect would have a serious influence on the polar atmospheric environment and on animals such as polar bears.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-07-15
    Description: The eastern China seas are some of the largest marginal seas in the world, where high primary productivity and phytoplankton blooms are often observed. However, little is known about their systematic variation of phytoplankton blooms on large spatial and long temporal scales due to the difficulty of monitoring bloom events by field measurement. In this study, we investigated the seasonal and interannual variability and long-term changes in phytoplankton blooms in the eastern China seas using a 14 yr (1998–2011) time series of satellite ocean colour data. To ensure a proper satellite dataset to figure out the bloom events, we validated and corrected the satellite-derived chlorophyll concentration (chl a) using extensive in situ datasets from two large cruises. The correlation coefficients between the satellite retrieval data and the in situ chl a on the logarithmic scale were 0.85 and 0.72 for the SeaWiFS and Aqua/MODIS data, respectively. Although satellites generally overestimate the chl a, especially in highly turbid waters, both the in situ and satellite data show that the overestimation of satellite-derived chl a has an upper limit value (10 μg L−1), which can be used as a threshold for the identification of phytoplankton blooms to avoid the false blooms resulting from turbid waters. Taking 10 μg L−1 as the threshold, we present the spatial-temporal variability of phytoplankton blooms in the eastern China seas over the past 14 yr. Most blooms occur in the Changjiang Estuary and along the coasts of Zhejiang, with a maximal frequency of 20% (about 73 days per year). The coasts of the northern Yellow Sea and the Bohai Sea also have high-frequency blooms (up to 20%). The blooms show significant seasonal variation, with most occurring in spring (April–June) and summer (July–September). The study also revealed a doubling in bloom intensity in the Yellow Sea and Bohai Sea during the past 14 yr. The nutrient supply in the eastern China seas might be a major controlling factor in bloom variation. The time series in situ nutrient datasets show that both the nitrate and phosphate concentrations increased more than twofold between 1998 and 2005 in the Yellow Sea. This might be the reason for the doubling of the bloom intensity index in the Yellow Sea and Bohai Sea. In contrast, there has been no significant long-term increase or decrease in the Changjiang Estuary, which might be regulated by the Changjiang River discharge. These results offer a foundation for the study of the influence of phytoplankton blooms on the carbon flux estimation and biogeochemical processes in the eastern China seas.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-10-15
    Description: The air–sea exchanges of CO2 in the world's 165 estuaries and 87 continental shelves are evaluated. Generally and in all seasons, upper estuaries with salinities of less than two are strong sources of CO2 (39 ± 56 mol C m−2 yr−1, positive flux indicates that the water is losing CO2 to the atmosphere); mid-estuaries with salinities of between 2 and 25 are moderate sources (17.5 ± 34 mol C m−2 yr−1) and lower estuaries with salinities of more than 25 are weak sources (8.4 ± 14 mol C m−2 yr−1). With respect to latitude, estuaries between 23.5 and 50° N have the largest flux per unit area (63 ± 101 mmol C m−2 d−1); these are followed by lower-latitude estuaries (23.5–0° S: 44 ± 29 mmol C m−2 d−1; 0–23.5° N: 39 ± 55 mmol C m−2 d−1), and then regions north of 50° N (36 ± 91 mmol C m−2 d−1). Estuaries south of 50° S have the smallest flux per unit area (9.5 ± 12 mmol C m−2 d−1). Mixing with low-pCO2 shelf waters, water temperature, residence time and the complexity of the biogeochemistry are major factors that govern the pCO2 in estuaries, but wind speed, seldom discussed, is critical to controlling the air–water exchanges of CO2. The total annual release of CO2 from the world's estuaries is now estimated to be 0.10 Pg C yr−1, which is much lower than published values mainly because of the contribution of a considerable amount of heretofore unpublished or new data from Asia and the Arctic. The Asian data, although indicating high pCO2, are low in sea-to-air fluxes because of low wind speeds. Previously determined flux values rely heavily on data from Europe and North America, where pCO2 is lower but wind speeds are much higher, such that the CO2 fluxes are higher than in Asia. Newly emerged CO2 flux data in the Arctic reveal that estuaries there mostly absorb rather than release CO2. Most continental shelves, and especially those at high latitude, are undersaturated in terms of CO2 and absorb CO2 from the atmosphere in all seasons. Shelves between 0 and 23.5° S are on average a weak source and have a small flux per unit area of CO2 to the atmosphere. Water temperature, the spreading of river plumes, upwelling, and biological production seem to be the main factors in determining pCO2 in the shelves. Wind speed, again, is critical because at high latitudes, the winds tend to be strong. Since the surface water pCO2 values are low, the air-to-sea fluxes are high in regions above 50° N and below 50° S. At low latitudes, the winds tend to be weak, so the sea-to-air CO2 flux is small. Overall, the world's continental shelves absorb 0.4 Pg C yr−1 from the atmosphere.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2011-12-21
    Description: A series of wildfires broke out in Western Russia starting in late July of 2010. Harmful particulates and gases released into the local Russian atmosphere have been reported, as have possible negative consequences for the global atmosphere. In this study, an extremely hazy area and its transport trajectory on Russian wildfires were analysed using aerosol optical depth (AOD) images retrieved via the synergy method from Moderate Resolution Imaging Spectroradiometer (MODIS) data. In addition, we used trace gases (NO2 and SO2) and CO2 products measured using Ozone Monitoring Instrument (OMI) data, vertical distribution of AOD data retrieved from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data, the mass trajectory analyses, synoptic maps from a HYSPLIT model simulation and ground-based data, including AERONET (both AOD and Ångström exponent) data and PM2.5. First, an Optimal Smoothing (OS) scheme was used to develop more precise and reliable AOD data based on multiple competing predictions made using several AOD retrieval models; then, integrated AOD and PM2.5 data were related using a chemical transport model (GEOS-Chem), and the integrated AOD and visibility data were related using the 6S radiative transfer code. The results show that the PM2.5 concentration is enhanced by a factor of 3–5 as determined from both satellite and in situ observations with peak daily mean concentrations of approximately 500 μg m3. Also, the visibility in many parts of Russia, for instance in Moscow, was less than 100 m; in some areas, the visibility was less than 50 m. Additionally, the possible impact on neighbouring countries due to long-transport was analysed for 31 July and 15 August 2010. A comparison of the satellite aerosol products and ground observations from the neighbouring countries suggests that wildfires in Western Russian had little impact on most european and asian countries, the exceptions being Finland, Estonia, Ukraine and Kyrgyzstan. However, a possible impact on the Arctic region was identified; such an effect would have a serious influence on the polar atmospheric enviroment, and on animals such as polar bears.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-20
    Print ISSN: 1364-5072
    Electronic ISSN: 1365-2672
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...