ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-12
    Description: Coastal erosion and flooding transform terrestrial landscapes into marine environments. In the Arctic, these processes inundate terrestrial permafrost with seawater and create submarine permafrost. Permafrost begins to warm under marine conditions, which can destabilize the sea floor and may release greenhouse gases. We report on the transition of terrestrial to submarine permafrost at a site where the timing of inundation can be inferred from the rate of coastline retreat. On Muostakh Island in the central Laptev Sea, East Siberia, changes in annual coastline position have been measured for decades and vary highly spatially. We hypothesize that these rates are inversely related to the inclination of the upper surface of submarine ice-bonded permafrost (IBP) based on the consequent duration of inundation with increasing distance from the shoreline. We compared rapidly eroding and stable coastal sections of Muostakh Island and find permafrost-table inclinations, determined using direct current resistivity, of 1 and 5 %, respectively. Determinations of submarine IBP depth from a drilling transect in the early 1980s were compared to resistivity profiles from 2011. Based on borehole observations, the thickness of unfrozen sediment overlying the IBP increased from 0 to 14 m below sea level with increasing distance from the shoreline. The geoelectrical profiles showed thickening of the unfrozen sediment overlying ice-bonded permafrost over the 28 years since drilling took place. We use geoelectrical estimates of IBP depth to estimate permafrost degradation rates since inundation. Degradation rates decreased from over 0.4 m a−1 following inundation to around 0.1 m a−1 at the latest after 60 to 110 years and remained constant at this level as the duration of inundation increased to 250 years. We suggest that long-term rates are lower than these values, as the depth to the IBP increases and thermal and porewater solute concentration gradients over depth decrease. For the study region, recent increases in coastal erosion rate and changes in benthic temperature and salinity regimes are expected to affect the depth to submarine permafrost, leading to coastal regions with shallower IBP.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-14
    Description: Warming of the Arctic led to an increase in permafrost temperatures by about 0.3 ∘C during the last decade. Permafrost warming is associated with increasing sediment water content, permeability, and diffusivity and could in the long term alter microbial community composition and abundance even before permafrost thaws. We studied the long-term effect (up to 2500 years) of submarine permafrost warming on microbial communities along an onshore–offshore transect on the Siberian Arctic Shelf displaying a natural temperature gradient of more than 10 ∘C. We analysed the in situ development of bacterial abundance and community composition through total cell counts (TCCs), quantitative PCR of bacterial gene abundance, and amplicon sequencing and correlated the microbial community data with temperature, pore water chemistry, and sediment physicochemical parameters. On timescales of centuries, permafrost warming coincided with an overall decreasing microbial abundance, whereas millennia after warming microbial abundance was similar to cold onshore permafrost. In addition, the dissolved organic carbon content of all cores was lowest in submarine permafrost after millennial-scale warming. Based on correlation analysis, TCC, unlike bacterial gene abundance, showed a significant rank-based negative correlation with increasing temperature, while bacterial gene copy numbers showed a strong negative correlation with salinity. Bacterial community composition correlated only weakly with temperature but strongly with the pore water stable isotopes δ18O and δD, as well as with depth. The bacterial community showed substantial spatial variation and an overall dominance of Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes, and Proteobacteria, which are amongst the microbial taxa that were also found to be active in other frozen permafrost environments. We suggest that, millennia after permafrost warming by over 10 ∘C, microbial community composition and abundance show some indications for proliferation but mainly reflect the sedimentation history and paleoenvironment and not a direct effect through warming.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-06
    Description: Warming of the Arctic led to an increase of permafrost temperatures by about 0.3 °C during the last decade. Permafrost warming is associated with increasing sediment water content, permeability and diffusivity and could on the long-term alter microbial community composition and abundance even before permafrost thaws. We studied the long-term effect (up to 2500 years) of submarine permafrost warming on microbial communities along an onshore-offshore transect on the Siberian Arctic Shelf displaying a natural temperature gradient of more than 10 °C. We analysed the in-situ development of bacterial abundance and community composition through total cell counts (TCC), quantitative PCR of bacterial gene abundance and amplicon sequencing, and correlated the microbial community data with temperature, pore water chemistry and sediment physicochemical parameters. On time-scales of centuries, permafrost warming coincided with an overall decreasing microbial abundance while millennia after warming microbial abundance was similar to cold onshore permafrost and DOC content was least. Based on correlation analysis TCC unlike bacterial gene abundance showed a significant rank-based negative correlation with increasing temperature while both TCC and bacterial gene copy numbers showed a negative correlation with salinity. Bacterial community composition correlated only weakly with temperature but strongly with pore-water stable isotope signatures and depth, while it showed no correlation with salinity. Microbial community composition showed substantial spatial variation and an overall dominance of Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes and Proteobacteria which are amongst the microbial taxa that were found to be active in other frozen permafrost environments as well. We suggest that, millennia after permafrost warming by over 10 °C, microbial community composition and abundance show some indications for proliferation but mainly reflect the sedimentation history and paleo-environment and not a direct effect through warming.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-18
    Description: Ground-based observations of land–atmosphere fluxes are necessary to progressively improve global climate models. Observed data can be used for model evaluation and to develop or tune process models. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. We present a multi-annual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic (72∘22′ N, 126∘30′ E). The site is part of the international network of eddy covariance flux observation stations (FLUXNET; site ID: Ru-Sam). The data set includes consistently processed fluxes based on concentration measurements of closed-path and open-path gas analyzers. With parallel records from both sensor types, we were able to apply a site-specific correction to open-path fluxes. This correction is necessary due to a deterioration of data, caused by heat generated by the electronics of open-path gas analyzers. Parameterizing this correction for subperiods of distinct sensor setups yielded good agreement between open- and closed-path fluxes. We compiled a long-term (2002 to 2017) carbon dioxide flux time series that we additionally gap-filled with a standardized approach. The data set was uploaded to the Pangaea database and can be accessed through https://doi.org/10.1594/PANGAEA.892751.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-10-08
    Description: Ground-based observations of land--atmosphere fluxes are necessary to progressively improve global climate models. Observed data can be used for model evaluation and to develop or tune process models. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. We present a multiannual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic (72°22′N, 126°30′E). The site is part of the international network of carbon dioxide flux observation stations (FLUXNET, Site ID: Ru-Sam). The dataset includes consistently processed fluxes based on concentration measurements of closed-path and open-path gas analyzers. With parallel records from both sensor types, we were able to apply a site-specific correction to open-path fluxes. This correction is necessary due to a deterioration of data, caused by heat generated by the electronics of open-path gas analyzers. Parameterizing this correction for subperiods of distinct sensor setups yielded good agreement between open and closed-path fluxes. We compiled a long-term (2002 to 2017) carbon dioxide flux time series that we additionally gap-filled with a standardized approach. The data set was uploaded to the Pangaea data base and can be accessed through https://doi.pangaea.de/10.1594/PANGAEA.892751.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-31
    Description: The thermokarst lakes of permafrost regions play a major role in the global carbon cycle. These lakes are sources of methane to the atmosphere although the methane flux is restricted by an ice cover for most of the year. How methane concentrations and fluxes in these waters are affected by the presence of an ice cover is poorly understood. To relate water body morphology, ice formation and methane to each other, we studied the ice of three different water bodies in locations typical of the transition of permafrost from land to ocean in a continuous permafrost coastal region in Siberia. In total, 11 ice cores were analyzed as records of the freezing process and methane composition during the winter season. The three water bodies differed in terms of connectivity to the sea, which affected fall freezing. The first was a bay underlain by submarine permafrost (Tiksi Bay, BY), the second a shallow thermokarst lagoon cut off from the sea in winter (Polar Fox Lagoon, LG) and the third a land-locked freshwater thermokarst lake (Goltsovoye Lake, LK). Ice on all water bodies was mostly methane-supersaturated with respect to atmospheric equilibrium concentration, except for three cores from the isolated lake. In the isolated thermokarst lake, ebullition from actively thawing basin slopes resulted in the localized integration of methane into winter ice. Stable δ13CCH4 isotope signatures indicated that methane in the lagoon ice was oxidized to concentrations close to or below the calculated atmospheric equilibrium concentration. Increasing salinity during winter freezing led to a micro-environment on the lower ice surface where methane oxidation occurred and the lagoon ice functioned as a methane sink. In contrast, the ice of the coastal marine environment was slightly supersaturated with methane, consistent with the brackish water below. Our interdisciplinary process study shows how water body morphology affects ice formation which mitigates methane fluxes to the atmosphere.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    University of Lisbon and the University of Évora
    In:  EPIC34th European Conference on Permafrost, Evora, 2014-06-18-2014-06-21Evora, University of Lisbon and the University of Évora
    Publication Date: 2014-06-18
    Description: Arctic permafrost coasts are eroding at rates similar or greater than temperate coasts and release large quantities of organic carbon and nitrogen previously stored in permafrost. Estimates of organic carbon fluxes from ice-rich permafrost coasts of the Laptev Sea, where data is scarce, differ widely with estimates varying by two orders or magnitude. Here, we used high resolution datasets on coastal erosion, cryostratigraphy, organic carbon and geomorphology from the Bykovsky Peninsula, in the southern Laptev Sea, to compute below ground organic carbon and nitrogen pools and fluxes of organic carbon from the coast for the current period and the next hundred years. Frozen deposits of the peninsula contain 141.6 Tg of organic carbon, a number 27% lower than what it would contain if the surface had not been affected by permafrost thaw in the past. An additional 44.0 Tg of organic carbon is contained under the peninsula below current sea level. The current fluxes of organic carbon from the peninsula are estimated at 0.058 Tg C a-1 and future fluxes at 0.067 Tg C a-1, or even at 0.085 Tg C a-1 if below sea level organic carbon stocks are included in the calculation. Extrapolation of these measurements to the entire Yedoma coast of the Laptev Sea gives an maximum annual flux of organic carbon from coastal erosion of 6.95 Tg C a-1, which ranges between the previously published minimum and maximum estimations for the same area.s
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    University of Lisbon and the University of Évora
    In:  EPIC34th European Conference on Permafrost, Evora, 2014-06-18-2014-06-21Evora, University of Lisbon and the University of Évora
    Publication Date: 2014-06-18
    Description: The transition from onshore to offshore permafrost during periods of low relative sea level rise is often the result of coastal retreat. Along the Laptev Sea coastline, ice-rich syngenetic permafrost is particularly susceptible to erosion due to changing climate, and coastal retreat floods about 10 km2 of permafrost each year. Changes to permafrost immediately after flooding provide an opportunity to study the mechanism of submarine permafrost degradation in general. Recent studies have drawn a link between observed methane release on the Laptev Sea shelf and surmised permafrost degradation. We combine direct observations of permafrost and methane to investigate the possibility of methane release from permafrost as a source. Our studies focus on a site in Buor Khaya Bay in the central Laptev Sea, for which coastal retreat rates have been studied. Following geophysical reconnaissance, we drilled a 52 m deep core in the near-shore zone of the eastern shore of Buor Khaya Bay and measured the permafrost temperature in the resulting borehole. Comparison of the submarine permafrost temperature to temperatures on land reveal warming of permafrost by 8 to 10 °C over a period of less than a millennium. During this time, the top of the ice-bearing permafrost (IBPF) degraded from 0 to 28.8 m b.s.l. at the borehole site, a mean degradation rate of almost 3 cm per year. Geoelectric resistivity measurements corroborate this observation and show a decline of the IBPF with increasing distance from shore. Similar to many other Siberian locations, the deeper permafrost at the study site contained less organic carbon by orders of magnitude when compared to the overlying syngenetic ice complex deposits. The same held true for methane concentrations in the frozen permafrost. Our data suggest that these comparatively low concentrations of methane are oxidized in the sediment column upon thawing. Analyses of the sediment and pore water chemistry demonstrate that sea water is probably advected to the IBPF, which contributes to permafrost degradation and provides sulfate for methane oxidation at the top of the thawing permafrost.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    University of Lisbon and the University of Évora
    In:  EPIC34th European Conference on Permafrost, Évora, Portugal, 2014-06-18-2014-06-21University of Lisbon and the University of Évora
    Publication Date: 2014-07-06
    Description: The intensity of thermo-erosion in the coastal zone of the Laptev Sea region mirrors the strong seasonality of exogenous hydro-meteorological conditions, mainly the presence or absence of sea ice and large temperature amplitudes. Permafrost, and in particular the widespread presence of syngenetic ground ice, both above and below sea level, constitute endogenous local conditions that make this coastline highly susceptible to currently observed warming and the associated extension of the open water season on the East Siberian arctic shelf. Although the general magnitude of erosion dynamics along Ice Complex coasts has been investigated, substantial information about local, regional, seasonal, and inter-annual variations still remain unknown. Monitoring capabilities could be increased by using the large areal coverage of historical records, accompanied by new acquisitions of contemporary high and very high resolution remote sensing data. Based on topographic reference measurements during field campaigns, we derived digital elevation models for subsequent orthorectification, in order to enable consistent distance and area measurements. A distinction was made between two related processes that work together, but with temporal and quantitative differences. Cliff top erosion (thermo-denudation) and cliff bottom erosion (thermo-abrasion) have different impacts on the volume of land loss and subsequent mass displacements. For a geographically broad baseline of well-distributed key areas, a proportional relationship of both processes on a multi-decadal long-term scale was observed, at site-specific average rates of -1.8 to -3.4 m/yr on Muostakh Island off the coast of Tiksi and along the continental coast of the Dmitriy Laptev Strait, respectively. However, short-term observations over the recent past revealed not only that erosion rates were 1.6 times more rapid on average, but also responded differently in terms of thermo-denudation and abrasion towards environmental forcings. This response was evaluated using the Normalized Difference Thermo-erosion Index (NDTI), whose value domain differentiates either marine or atmospherically driven erosion regimes, and may additionally indicate near-surface ground ice conditions. Seasonal observations on Muostakh, where the most rapid long-term rates of -9.6 m a-1 have been measured, revealed the existence of a thermo-erosional cycle, during which rates of either thermo-denudation or abrasion are overtaken by the respective opposite process. The frequency of this recurring pattern is also likely to have increased, at least since 2005, when the summer sea ice free period in the southern central Laptev Sea was above average and the sum of positive daily average surface air temperatures in Tiksi reached new all-time maxima. This is necessarily accompanied by larger short-term fluctuations of NDTI, causing coastal cliff morphologies to change more often, resulting in more effective volumetric erosion.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-28
    Description: Warming of the Arctic led to an increase in permafrost temperatures by about 0.3 �C during the last decade. Permafrost warming is associated with increasing sediment water content, permeability, and diffusivity and could in the long term alter microbial community composition and abundance even before permafrost thaws. We studied the long-term effect (up to 2500 years) of submarine permafrost warming on microbial communities along an onshore–offshore transect on the Siberian Arctic Shelf displaying a natural temperature gradient of more than 10 �C. We analysed the in situ development of bacterial abundance and community composition through total cell counts (TCCs), quantitative PCR of bacterial gene abundance, and amplicon sequencing and correlated the microbial community data with temperature, pore water chemistry, and sediment physicochemical parameters. On timescales of centuries, permafrost warming coincided with an overall decreasing microbial abundance, whereas millennia after warming microbial abundance was similar to cold onshore permafrost. In addition, the dissolved organic carbon content of all cores was lowest in submarine permafrost after millennial-scale warming. Based on correlation analysis, TCC, unlike bacterial gene abundance, showed a significant rank-based negative correlation with increasing temperature, while bacterial gene copy numbers showed a strong negative correlation with salinity. Bacterial community composition correlated only weakly with temperature but strongly with the pore water stable isotopes �18O and �D, as well as with depth. The bacterial community showed substantial spatial variation and an overall dominance of Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes, and Proteobacteria, which are amongst the microbial taxa that were also found to be active in other frozen permafrost environments. We suggest that, millennia after permafrost warming by over 10 �C, microbial community composition and abundance show some indications for proliferation but mainly reflect the sedimentation history and paleoenvironment and not a direct effect through warming.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...