ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-19
    Description: Bubbles adsorb and transport particulate matter in a variety of natural and engineered settings, including industrial, freshwater, and marine systems. While methane-containing bubbles emitted from anoxic sediments are found widely in freshwater ecosystems, relatively little attention has been paid to the possibility that these bubbles transport particle-associated chemical or biological material from sediments to surface waters of freshwater lakes. We triggered ebullition and quantified transport of particulate material from sediments to the surface by bubbles in Upper Mystic Lake, MA, and in a 15 m tall experimental column. Particle transport was positively correlated with the volume of gas bubbles released from the sediment, and particles transported by bubbles appear to originate almost entirely in the sediment, rather than being scavenged from the water column. Concentrations of arsenic, chromium, lead, and cyanobacterial cells in bubble-transported particulate material were similar to those of bulk sediment, and particles were transported from depths exceeding 15 m, implying the potential for daily average fluxes as large as 0.18 µg arsenic m−2 and 2×104 cyanobacteria cells m−2 in the strongly stratified Upper Mystic Lake. Bubble-facilitated arsenic transport currently appears to be a modest component of total arsenic cycling in this lake. Although more work is needed to reduce uncertainty in budget estimates, bubble-facilitated cyanobacterial transport has the potential to contribute substantially to the cyanobacteria cell recruitment to the surface of this lake and may thus be of particular importance in large, deep, stratified lakes.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-10-06
    Description: Microbes in the ocean dominate biogeochemical processes and are far more diverse than anticipated. Thus, in order to understand the ocean system, we need to delineate microbial populations with predictable ecological functions. Recent observations suggest that ocean communities comprise diverse groups of bacteria organized into genotypic (and phenotypic) clusters of closely related organisms. Although such patterns are similar to metazoan communities, the underlying mechanisms for microbial communities may differ substantially. Indeed, the potential among ocean microbes for vast population sizes, extensive migration and both homologous and illegitimate genetic recombinations, which are uncoupled from reproduction, challenges classical population models primarily developed for sexually reproducing animals. We examine possible mechanisms leading to the formation of genotypic clusters and consider alternative population genetic models for differentiation at individual loci as well as gene content at the level of whole genomes. We further suggest that ocean bacteria follow at least two different adaptive strategies, which constrain rates and bounds of evolutionary processes: the ‘opportuni-troph’, exploiting spatially and temporally variable resources; and the passive oligotroph, efficiently using low nutrient concentrations. These ecological lifestyle differences may represent a fundamental divide with major consequences for growth and predation rates, genome evolution and population diversity, as emergent properties driving the division of labour within microbial communities.
    Print ISSN: 0962-8436
    Electronic ISSN: 1471-2970
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...