ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Magnetospheric physics (Polar cap phenomena; Solar wind-magnetosphere interactions)  (1)
  • tropospheric processing  (1)
  • Copernicus  (2)
  • Springer Science + Business Media
  • 1
    Publication Date: 2017-04-04
    Description: Improving the constraints on the atmospheric fate and depletion rates of acidic compounds persistently emitted by non-erupting (quiescent) volcanoes is important for quantitatively predicting the environmental impact of volcanic gas plumes. Here, we present new experimental data coupled with modelling studies to investigate the chemical processing of acidic volcanogenic species during tropospheric dispersion. Diffusive tube samplers were deployed at Mount Etna, a very active open-conduit basaltic volcano in eastern Sicily, and Vulcano Island, a closed-conduit quiescent volcano in the Aeolian Islands (northern Sicily). Sulphur dioxide (SO2), hydrogen sulphide (H2S), hydrogen chloride (HCl) and hydrogen fluoride (HF) concentrations in the volcanic plumes (typically several minutes to a few hours old) were repeatedly determined at distances from the summit vents ranging from 0.1 to ~10 km, and under different environmental conditions. At both volcanoes, acidic gas concentrations were found to decrease exponentially with distance from the summit vents (e.g., SO2 decreases from ~10,000 μg/m3 at 0.1 km from Etna’s vents down to ~7 _μg/m3 at ~10km distance), reflecting the atmospheric dilution of the plume within the acid gas-free background troposphere. Conversely, SO2/HCl, SO2/HF, and SO2/H2S ratios in the plume showed no systematic changes with plume aging, and fit source compositions within analytical error. Assuming that SO2 losses by reaction are small during short-range atmospheric transport within quiescent (ash-free) volcanic plumes, our observations suggest that, for these short transport distances, atmospheric reactions for H2S and halogens are also negligible. The one-dimensional model MISTRA was used to simulate quantitatively the evolution of halogen and sulphur compounds in the plume of Mt. Etna. Model predictions support the hypothesis of minor HCl chemical processing during plume transport, at least in cloud-free conditions. Larger variations in the modelled SO2/HCl ratios were predicted under cloudy conditions, due to heterogeneous chlorine cycling in the aerosol phase. The modelled evolution of the SO2/H2S ratios is found to be substantially dependent on whether or not the interactions of H2S with halogens are included in the model. In the former case, H2S is assumed to be oxidized in the atmosphere mainly by OH, which results in minor chemical loss for H2S during plume aging and produces a fair match between modelled and measured SO2/H2S ratios. In the latter case, fast oxidation of H2S by Cl leads to H2S chemical lifetimes in the early plume of a few seconds, and thus SO2 to H2S ratios that increase sharply during plume transport. This disagreement between modelled and observed plume compositions suggests that more in-detail kinetic investigations are required for a proper evaluation of H2S chemical processing in volcanic plumes.
    Description: Published
    Description: 1441-1450
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: open
    Keywords: Mt. Etna ; volcanic gas plumes ; tropospheric processing ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: After some short test surveys, during the 2004–2005 summer expedition in Antarctica, a geomagnetic French-Italian observatory was installed on the plateau (geographic coordinates: 75.1 S, 123.4 E; corrected geomagnetic coordinates: 88.9 S, 54.3 E; UT=LT−8) very close to the geomagnetic pole. In this paper we present some peculiarities of the daily variation as observed at this polar cap observatory during the years 2005 and 2006, taking into account the different Loyd seasons and different interplanetary magnetic field conditions. Some interesting results emerge from the analysis, confirming the dependence of the daily variation (and of the associated polar current systems) on the IMF Bz and By components. In particular the analysis showed that different Bz conditions correspond to different contribution to daily variation of ionospheric and field aligned currents, while particular By conditions lead to a time shift of the diurnal variation, indicating an asymmetry with respect to the noon meridian.
    Description: Published
    Description: 2045–2051
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: 1.6. Osservazioni di geomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Geomagnetism and paleomagnetism (Time variations, diurnal to secular) ; Magnetospheric physics (Polar cap phenomena; Solar wind-magnetosphere interactions) ; 01. Atmosphere::01.03. Magnetosphere::01.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...