ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-09-15
    Description: Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. The factors influencing the spatial and temporal pattern of winter respiration (RECO) of northern ecosystems are poorly understood. For this reason, we analyzed eddy covariance flux data sets from 57 ecosystem sites ranging from ~35° N to ~70° N. Deciduous forests carry the highest winter RECO ratios (9.7–10.5 g C m−2 d−1), when winter is defined as the period during which air temperature remained below 0 °C. By contrast, wetland ecosystems had the lowest winter RECO (2.1–2.3 g C m−2 d−1). Evergreen needle-leaved forests, grasslands and croplands were characterized by intermediate winter RECO values of 7.4–7.9 g C m−2 d−1, 5.8–6.0 g C m−2 d−1, and 5.2–5.3 g C m−2 d−1, respectively. Cross site analysis showed that winter air or soil temperature, and the seasonal amplitude of the leaf area index inferred from satellite observation, which is a proxy for the amount of litter available for RECO in the subsequent winter, are the two main factors determining spatial pattern of daily mean winter RECO. Together, these two factors can explain 71% (Tair, ΔLAI) or 69% (Tsoil, ΔLAI) of the spatial variance of winter RECO across the 57 sites. The spatial temperature sensitivity of daily winter RECO was determined empirically by fitting an Arrhenius relationship to the data. The activation energy parameter of this relationship was found to decrease at increasing soil temperature at a rate of 83.1 KJ ° C-1 (r = −0.32, p 〈 0.05), which implies a possible dampening of the increase in winter RECO due to global warming. The interannual variability of winter RECO is better explained by soil temperature than by air temperature, likely due to the insulating effects of snow cover. The increase in winter RECO with a 1 °C warming based calculated from the spatial analysis was almost that double that calculated from the temporal analysis. Thus, models that calculate the effects of warming on RECO based only on spatial analyses could be over-estimating the impact.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-09-14
    Description: Several studies sustained the possibility that a photochemical reflectance index (PRI) directly obtained from satellite data can be used as a proxy for ecosystem light use efficiency (LUE) in diagnostic models of gross primary productivity. This modelling approach would avoid the complications that are involved in using meteorological data as constraints for a fixed maximum LUE. However, no unifying model predicting LUE across climate zones and time based on MODIS PRI has been published to date. In this study, we evaluate the efficiency with which MODIS-based PRI can be used to estimate ecosystem light use efficiency at study sites of different plant functional types and vegetation densities. Our objective is to examine if known limitations such as dependance on viewing and illumination geometry can be overcome and a single PRI-based model of LUE (i.e. based on the same reference band) can be applied under a wide range of conditions. Furthermore, we were interested in the effect of using different faPAR (fraction of absorbed photosynthetically active radiation) products on the in-situ LUE used as ground truth and thus on the whole evaluation exercise. We found that estimating LUE at site-level based on PRI reduces uncertainty compared to the approaches relying on a maximum LUE reduced by minimum temperature and vapour pressure deficit. Despite the advantages of using PRI to estimate LUE at site-level, we could not establish an universally applicable light use efficiency model based on MODIS PRI. Models that were optimised for a pool of data from several sites did not perform well.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-12-06
    Description: Interactions between different qualities of soil organic matter (SOM) affecting their turnover are rarely represented in models. In this study we propose three mathematical strategies at different levels of abstraction for representing those interactions. Implementing these strategies into the Introductory Carbon Balance Model (ICBM) and applying them to several scenarios of litter input show that the different levels of abstraction are applicable on different time scales. We present a simple one-parameter equation of substrate limitation applicable at decadal time scale that is straightforward to implement into other models of SOM dynamics. We show how substrate quality interactions can explain priming effects, acceleration of turnover times in FACE experiments, and the slowdown of decomposition in long-term bare fallow experiments as an effect of energy limitation of microbial biomass. The mechanisms of those interactions need to be further scrutinized empirically for a more complete understanding. Overall, substrate quality interactions offer a valuable way of understanding and quantitatively modelling SOM dynamics.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-17
    Description: Land models, which have been developed by the modeling community in the past two decades to predict future states of ecosystems and climate, have to be critically evaluated for their performance skills of simulating ecosystem responses and feedback to climate change. Benchmarking is an emerging procedure to measure and evaluate performance of models against a set of defined standards. This paper proposes a benchmarking framework for evaluation of land models. The framework includes (1) targeted aspects of model performance to be evaluated; (2) a set of benchmarks as defined references to test model performance; (3) metrics to measure and compare performance skills among models so as to identify model strengths and deficiencies; and (4) model improvement. Component 4 may or may not be involved in a benchmark analysis but is an ultimate goal of general modeling research. Land models are required to simulate exchange of water, energy, carbon and sometimes other trace gases between the atmosphere and the land-surface, and should be evaluated for their simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics across timescales in response to both weather and climate change. Benchmarks that are used to evaluate models generally consist of direct observations, data-model products, and data-derived patterns and relationships. Metrics of measuring mismatches between models and benchmarks may include (1) a priori thresholds of acceptable model performance and (2) a scoring system to combine data-model mismatches for various processes at different temporal and spatial scales. The benchmark analyses should identify clues of weak model performance for future improvement. Iterations between model evaluation and improvement via benchmarking shall demonstrate progress of land modeling and help establish confidence in land models for their predictions of future states of ecosystems and climate.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-01-01
    Electronic ISSN: 1539-1663
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-10-01
    Description: Land evapotranspiration (ET) estimates are available from several global data sets. Here, monthly global land ET synthesis products, merged from these individual data sets over the time periods 1989–1995 (7 yr) and 1989–2005 (17 yr), are presented. The merged synthesis products over the shorter period are based on a total of 40 distinct data sets while those over the longer period are based on a total of 14 data sets. In the individual data sets, ET is derived from satellite and/or in situ observations (diagnostic data sets) or calculated via land-surface models (LSMs) driven with observations-based forcing or output from atmospheric reanalyses. Statistics for four merged synthesis products are provided, one including all data sets and three including only data sets from one category each (diagnostic, LSMs, and reanalyses). The multi-annual variations of ET in the merged synthesis products display realistic responses. They are also consistent with previous findings of a global increase in ET between 1989 and 1997 (0.13 mm yr−2 in our merged product) followed by a significant decrease in this trend (−0.18 mm yr−2), although these trends are relatively small compared to the uncertainty of absolute ET values. The global mean ET from the merged synthesis products (based on all data sets) is 493 mm yr−1 (1.35 mm d−1) for both the 1989–1995 and 1989–2005 products, which is relatively low compared to previously published estimates. We estimate global runoff (precipitation minus ET) to 263 mm yr−1 (34 406 km3 yr−1) for a total land area of 130 922 000 km2. Precipitation, being an important driving factor and input to most simulated ET data sets, presents uncertainties between single data sets as large as those in the ET estimates. In order to reduce uncertainties in current ET products, improving the accuracy of the input variables, especially precipitation, as well as the parameterizations of ET, are crucial.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-01-17
    Description: Land evapotranspiration (ET) estimates are available from several global datasets. Here, monthly global land ET synthesis products, merged from these individual datasets over the time periods 1989–1995 (7 yr) and 1989–2005 (17 yr), are presented. The merged synthesis products over the shorter period are based on a total of 40 distinct datasets while those over the longer period are based on a total of 14 datasets. In the individual datasets, ET is derived from satellite and/or in-situ observations (diagnostic datasets) or calculated via land-surface models (LSMs) driven with observations-based forcing and atmospheric reanalyses. Statistics for four merged synthesis products are provided, one including all datasets and three including only datasets from one category each (diagnostic, LSMs, and reanalyses). The multi-annual variations of ET in the merged synthesis products display realistic responses. They are also consistent with previous findings of a global increase in ET between 1989 and 1997 (1.15 mm yr−2 in our merged product) followed by a decrease in this trend (−1.40 mm yr−2), although these trends are relatively small compared to the uncertainty of absolute ET values. The global mean ET from the merged synthesis products (based on all datasets) is 1.35 mm per day for both the 1989–1995 and 1989–2005 products, which is relatively low compared to previously published estimates. We estimate global runoff (precipitation minus ET) to 34 406 km3 per year for a total land area of 130 922 km2. Precipitation, being an important driving factor and input to most simulated ET datasets, presents uncertainties between single datasets as large as those in the ET estimates. In order to reduce uncertainties in current ET products, improving the accuracy of the input variables, especially precipitation, as well as the parameterizations of ET are crucial.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-02-02
    Description: Understanding, quantifying and attributing the impacts of extreme weather and climate events in the terrestrial biosphere is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit biases in their output that hinder any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies, most of which have been criticized for physical inconsistency and the nonpreservation of the multivariate correlation structure. In this study, we introduce a novel, resampling-based bias correction scheme that fully preserves the physical consistency and multivariate correlation structure of the model output. This procedure strongly improves the representation of climatic extremes and variability in a large regional climate model ensemble (HadRM3P, climateprediction.net/weatherathome), which is illustrated for summer extremes in temperature and rainfall over Central Europe. Moreover, we simulate biosphere–atmosphere fluxes of carbon and water using a terrestrial ecosystem model (LPJmL) driven by the bias-corrected climate forcing. The resampling-based bias correction yields strongly improved statistical distributions of carbon and water fluxes, including the extremes. Our results thus highlight the importance of carefully considering statistical moments beyond the mean for climate impact simulations. In conclusion, the present study introduces an approach to alleviate climate model biases in a physically consistent way and demonstrates that this yields strongly improved simulations of climate extremes and associated impacts in the terrestrial biosphere. A wider uptake of our methodology by the climate and impact modelling community therefore seems desirable for accurately quantifying changes in past, current and future extremes.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-10-19
    Description: Understanding, quantifying and attributing the impacts of extreme weather and climate events in the terrestrial biosphere is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. In this study, we introduce a novel, resampling-based bias correction scheme that fully preserves the physical consistency and multivariate correlation structure of the model output. This procedure strongly improves the representation of climatic extremes and variability in a large regional climate model ensemble (HadRM3P, climateprediction.net/weatherathome), which is illustrated for summer extremes in temperature and rainfall over Central Europe. Moreover, we simulate biosphere–atmosphere fluxes of carbon and water using a terrestrial ecosystem model (LPJmL) driven by the bias corrected climate forcing. The resampling-based bias correction yields strongly improved statistical distributions of carbon and water fluxes, including the extremes. Our results thus highlight the importance to carefully consider statistical moments beyond the mean for climate impact simulations. In conclusion, the present study introduces an approach to alleviate climate model biases in a physically consistent way and demonstrates that this yields strongly improved simulations of climate extremes and associated impacts in the terrestrial biosphere. A wider uptake of our methodology by the climate and impact modelling community therefore seems desirable for accurately quantifying past, current and future extremes.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-07-13
    Description: Eddy covariance technique to measure CO2, water and energy fluxes between biosphere and atmosphere is widely spread and used in various regional networks. Currently more that 250 eddy covariance sites are active around the world measuring carbon exchange at high temporal resolution for different biomes and climatic conditions. These data are usually acquired using the same method but they need a set of corrections that are often differently applied to each site and in a subjective way. In this paper a new standardized set of corrections are proposed and the uncertainties introduced by these corrections are assessed for 8 different forest sites in Europe with a total of 12 yearly datasets. The uncertainties introduced on the two components GPP (Gross Primary Production) and TER (Terrestrial Ecosystem Respiration) are also discussed and a quantitative analysis presented . The results show that a standardized data processing is needed for an effective comparison across biomes and for underpinning inter-annual variability. The methodology presented in this paper has also been integrated in the European database of the eddy covariance measurements.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...