ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Computational Methods, Massively Parallel (Deep) Sequencing, Genomics  (4)
  • Computational Methods  (2)
  • Oxford University Press  (6)
  • Copernicus
  • 1
    Publication Date: 2016-07-09
    Description: Bioinformatic analysis often produces large sets of genomic ranges that can be difficult to interpret in the absence of genomic context. Goldmine annotates genomic ranges from any source with gene model and feature contexts to facilitate global descriptions and candidate loci discovery. We demonstrate the value of genomic context by using Goldmine to elucidate context dynamics in transcription factor binding and to reveal differentially methylated regions (DMRs) with context-specific functional correlations. The open source R package and documentation for Goldmine are available at http://jeffbhasin.github.io/goldmine .
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-22
    Description: Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for polyC/G tracts within C. jejuni genomes. Switching rates for these tracts were measured using chromosomally-located reporter constructs and high rates were observed for cj1139 (G8) and cj0031 (G9). Alteration of the cj1139 tract from G8 to G11 increased mutability 10-fold and changed the mutational pattern from predominantly insertions to mainly deletions. Using a multiplex PCR, major changes were detected in ‘on/off’ status for some phase variable genes during passage of C. jejuni in chickens. Utilization of observed switching rates in a stochastic, theoretical model of phase variation demonstrated links between mutability and genetic diversity but could not replicate observed population diversity. We propose that modal repeat numbers have evolved in C. jejuni genomes due to molecular drivers associated with the mutational patterns of these polyC/G repeats, rather than by selection for particular switching rates, and that factors other than mutational drift are responsible for generating genetic diversity during host colonization by this bacterial pathogen.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-03
    Description: Recent advances in high-throughput sequencing (HTS) technologies and computing capacity have produced unprecedented amounts of genomic data that have unraveled the genetics of phenotypic variability in several species. However, operating and integrating current software tools for data analysis still require important investments in highly skilled personnel. Developing accurate, efficient and user-friendly software packages for HTS data analysis will lead to a more rapid discovery of genomic elements relevant to medical, agricultural and industrial applications. We therefore developed Next-Generation Sequencing Eclipse Plug-in (NGSEP), a new software tool for integrated, efficient and user-friendly detection of single nucleotide variants (SNVs), indels and copy number variants (CNVs). NGSEP includes modules for read alignment, sorting, merging, functional annotation of variants, filtering and quality statistics. Analysis of sequencing experiments in yeast, rice and human samples shows that NGSEP has superior accuracy and efficiency, compared with currently available packages for variants detection. We also show that only a comprehensive and accurate identification of repeat regions and CNVs allows researchers to properly separate SNVs from differences between copies of repeat elements. We expect that NGSEP will become a strong support tool to empower the analysis of sequencing data in a wide range of research projects on different species.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-01
    Description: The progression and clonal development of tumors often involve amplifications and deletions of genomic DNA. Estimation of allele-specific copy number, which quantifies the number of copies of each allele at each variant loci rather than the total number of chromosome copies, is an important step in the characterization of tumor genomes and the inference of their clonal history. We describe a new method, falcon , for f inding somatic al lele-specific co py n umber changes by next generation sequencing of tumors with matched normals. falcon is based on a change-point model on a bivariate mixed Binomial process, which explicitly models the copy numbers of the two chromosome haplotypes and corrects for local allele-specific coverage biases. By using the Binomial distribution rather than a normal approximation, falcon more effectively pools evidence from sites with low coverage. A modified Bayesian information criterion is used to guide model selection for determining the number of copy number events. Falcon is evaluated on in silico spike-in data and applied to the analysis of a pre-malignant colon tumor sample and late-stage colorectal adenocarcinoma from the same individual. The allele-specific copy number estimates obtained by falcon allows us to draw detailed conclusions regarding the clonal history of the individual's colon cancer.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-05-13
    Description: The informational content of RNA sequencing is currently far from being completely explored. Most of the analyses focus on processing tables of counts or finding isoform deconvolution via exon junctions. This article presents a comparison of several techniques that can be used to estimate differential expression of exons or small genomic regions of expression, based on their coverage function shapes. The problem is defined as finding the differentially expressed exons between two samples using local expression profile normalization and statistical measures to spot the differences between two profile shapes. Initial experiments have been done using synthetic data, and real data modified with synthetically created differential patterns. Then, 160 pipelines (5 types of generator x 4 normalizations x 8 difference measures) are compared. As a result, the best analysis pipelines are selected based on linearity of the differential expression estimation and the area under the ROC curve. These platform-independent techniques have been implemented in the Bioconductor package rnaSeqMap. They point out the exons with differential expression or internal splicing, even if the counts of reads may not show this. The areas of application include significant difference searches, splicing identification algorithms and finding suitable regions for QPCR primers.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-03-13
    Description: Genetic disorders can be detected by prenatal diagnosis using Chorionic Villus Sampling, but the 1:100 chance to result in miscarriage restricts the use to fetuses that are suspected to have an aberration. Detection of trisomy 21 cases noninvasively is now possible owing to the upswing of next-generation sequencing (NGS) because a small percentage of fetal DNA is present in maternal plasma. However, detecting other trisomies and smaller aberrations can only be realized using high-coverage NGS, making it too expensive for routine practice. We present a method, WISECONDOR (WIthin-SamplE COpy Number aberration DetectOR), which detects small aberrations using low-coverage NGS. The increased detection resolution was achieved by comparing read counts within the tested sample of each genomic region with regions on other chromosomes that behave similarly in control samples. This within-sample comparison avoids the need to re-sequence control samples. WISECONDOR correctly identified all T13, T18 and T21 cases while coverages were as low as 0.15–1.66. No false positives were identified. Moreover, WISECONDOR also identified smaller aberrations, down to 20 Mb, such as del(13)(q12.3q14.3), +i(12)(p10) and i(18)(q10). This shows that prevalent fetal copy number aberrations can be detected accurately and affordably by shallow sequencing maternal plasma. WISECONDOR is available at bioinformatics.tudelft.nl/wisecondor.
    Keywords: Computational Methods, Massively Parallel (Deep) Sequencing, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...