ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 249 (1974), S. 773-775 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Structural studies7 show that the zinc atom in Zn(II) carbonic anhydrase is situated at the bottom of a cleft, lined with hydro-phobic groups, in the protein molecule, and also that it is tetrahedrally coordinated by three imidazole groups and one water molecule. It has been postulated that this ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 155 (1945), S. 266-267 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] PROF. B. SAHNI'S important observations1 have necessitated a reconsideration of this problem. In order to review the geological evidence on the ground, an excursion was arranged to examine several sections which had led E. R. Gee, of the Geological Survey of India, and other ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 186 (1960), S. 1033-1034 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] CYTOCHROME 62, the L(-f) lactate dehydrogenase of baker's yeast1, is rapidly inactivated in the presence of air1-4. The inactivation occurs in the presence of indophenol cytochrome c indophenol cytochrome c substrate, and also with added hydrogen peroxide, and is decreased when catalase is ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 134 (1934), S. 141-141 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] AN accurate determination of the conductivity of salts in anhydrous hydrogen cyanide is of considerable interest in view of the high dielectric constant of this solvent. Indications of high values for the equivalent conductance were obtained by Centnerszwer1, Kahlenberg and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 197 (1963), S. 1104-1105 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] We have measured the apparent molecular weight of insulin in acid solution over a range of concentrations from approximately 0-8 to 0-02 g/100 ml. using the technique of sedimentation equilibrium. A Spinco model E ultra-centrifuge, equipped with a Rayleigh interference optical system and both 12-mm ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 65 (1901), S. 128-128 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] IT has often occurred to me that the collection of data, such as those necessary for the investigation of fog distribution, might well be entrusted to the science schools over which the Technical Education Board of the London County Council exercise control. There is, in such a research, ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-05-09
    Description: Surface ozone is a secondary air pollutant produced during the atmospheric photochemical degradation of emitted volatile organic compounds (VOCs) in the presence of sunlight and nitrogen oxides (NOx). Temperature directly influences ozone production through speeding up the rates of the chemical reactions and increasing the emissions of VOCs, such as isoprene, from vegetation. In this study, we used a box model to examine the non-linear relationship between ozone, NOx and temperature, and compared this to previous observational studies. Under high-NOx conditions, an increase in ozone from 20 to 40 °C of up to 20 ppbv was due to faster reaction rates while increased isoprene emissions added up to a further 11 ppbv of ozone. The increased oxidation rate of emitted VOC with temperature controlled the rate of Ox production, the net influence of peroxy nitrates increased net Ox production per molecule of emitted VOC oxidised. The rate of increase in ozone mixing ratios with temperature from our box model simulations was about half the rate of increase in ozone with temperature observed over central Europe or simulated by a regional chemistry transport model. Modifying the box model setup to approximate stagnant meteorological conditions increased the rate of increase of ozone with temperature as the accumulation of oxidants enhanced ozone production through the increased production of peroxy radicals from the secondary degradation of emitted VOCs. The box model simulations approximating stagnant conditions and the maximal ozone production chemical regime reproduced the 2 ppbv increase in ozone per °C from the observational and regional model data over central Europe. The simulated ozone-temperature relationship was more sensitive to mixing than the choice of chemical mechanism. Our analysis suggests that reductions in NOx emissions would be required to offset the additional ozone production due to an increase in temperature in the future.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-04-29
    Description: Ground-level ozone is a secondary pollutant produced photochemically from reactions of NOx with peroxy radicals produced during VOC degradation. Chemical transport models use simplified representations of this complex gas-phase chemistry to predict O3 levels and inform emission control strategies. Accurate representation of O3 production chemistry is vital for effective predictions. In this study, VOC degradation chemistry in simplified mechanisms is compared to that in the near-explicit MCM mechanism using a boxmodel and by "tagging" all organic degradation products over multi-day runs, thus calculating the Tagged Ozone Production Potential (TOPP) for a selection of VOC representative of urban airmasses. Simplified mechanisms that aggregate VOC degradation products instead of aggregating emitted VOC produce comparable amounts of O3 from VOC degradation to the MCM. First day TOPP values are similar across mechanisms for most VOC, with larger discrepancies arising over the course of the model run. Aromatic and unsaturated aliphatic VOC have largest inter-mechanisms differences on the first day, while alkanes show largest differences on the second day. Simplified mechanisms break down VOC into smaller sized degradation products on the first day faster than the MCM impacting the total amount of O3 produced on subsequent days due to secondary chemistry.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-10
    Description: Ground-level ozone is a secondary pollutant produced photochemically from reactions of NOx with peroxy radicals produced during volatile organic compound (VOC) degradation. Chemical transport models use simplified representations of this complex gas-phase chemistry to predict O3 levels and inform emission control strategies. Accurate representation of O3 production chemistry is vital for effective prediction. In this study, VOC degradation chemistry in simplified mechanisms is compared to that in the near-explicit Master Chemical Mechanism (MCM) using a box model and by "tagging" all organic degradation products over multi-day runs, thus calculating the tagged ozone production potential (TOPP) for a selection of VOCs representative of urban air masses. Simplified mechanisms that aggregate VOC degradation products instead of aggregating emitted VOCs produce comparable amounts of O3 from VOC degradation to the MCM. First-day TOPP values are similar across mechanisms for most VOCs, with larger discrepancies arising over the course of the model run. Aromatic and unsaturated aliphatic VOCs have the largest inter-mechanism differences on the first day, while alkanes show largest differences on the second day. Simplified mechanisms break VOCs down into smaller-sized degradation products on the first day faster than the MCM, impacting the total amount of O3 produced on subsequent days due to secondary chemistry.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...