ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-04-15
    Description: Land ecosystems currently take up a quarter of the human-caused carbon dioxide emissions. Future projections of this carbon sink are strikingly divergent, leading to major uncertainties in projected global warming. This situation partly reflects our insufficient understanding of carbon-nitrogen (C-N) interactions and particularly of the controls on biological N fixation (BNF). It is difficult to infer ecosystem responses for century time scales, relevant for global warming, from the comparatively short instrumental records and laboratory or field experiments. Here we analyse terrestrial emissions of nitrous oxide (N2O) over the past 21,000 years as reconstructed from ice-core isotopic data and presented in part I of this study. Changing N2O emissions are interpreted to reflect changes in ecosystem N loss, plant available N, and BNF. The ice-core data reveal a 40 % increase in N2O emissions over the deglaciation, suggestive of a highly dynamic global N cycle whereby sources of plant-available N adjust to meet plant N demand and loss fluxes. Remarkably, the increase occurred in two steps, each realized within maximum two centuries, at the onsets of the northern hemisphere warming events around 14,600 and 11,700 years ago. We applied the LPX-Bern dynamic global vegetation model in deglacial simulations forced with Earth System Model climate data to investigate N2O emission patterns, mechanisms, and C-N coupling. The reconstructed increase in terrestrial emissions is broadly reproduced by the model, given the assumption that BNF positively responds to increasing N demand by plants. In contrast, assuming time- and demand-independent levels of BNF in the model to mimic progressive N limitation of plant growth results in N2O emissions that are incompatible with the reconstruction. Our results suggest the existence of (a) strong biological controls on ecosystem N acquisition, and (b) flexibility in the coupling of the C and N cycles during periods of rapid environmental change.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-11-14
    Description: Using new and previously published CO2 data from the EPICA Dome C ice core (EDC), we reconstruct a new high-resolution record of atmospheric CO2 during Marine Isotope Stage (MIS) 6 (190 to 135 ka)  the penultimate glacial period. Similar to the last glacial cycle, where high-resolution data already exists, our record shows that during longer North Atlantic (NA) stadials, millennial CO2 variations during MIS 6 are clearly coincident with the bipolar seesaw signal in the Antarctic temperature record. However, during one short stadial in the NA, atmospheric CO2 variation is small (∼5 ppm) and the relationship between temperature variations in EDC and atmospheric CO2 is unclear. The magnitude of CO2 increase during Carbon Dioxide Maxima (CDM) is closely related to the NA stadial duration in both MIS 6 and MIS 3 (60–27 ka). This observation implies that during the last two glacials the overall bipolar seesaw coupling of climate and atmospheric CO2 operated similarly. In addition, similar to the last glacial period, CDM during the earliest MIS 6 show different lags with respect to the corresponding abrupt CH4 rises, the latter reflecting rapid warming in the Northern Hemisphere (NH). During MIS 6i at around 181.5±0.3 ka, CDM 6i lags the abrupt warming in the NH by only 240±320 years. However, during CDM 6iv (171.1±0.2 ka) and CDM 6iii (175.4±0.4 ka) the lag is much longer: 1290±540 years on average. We speculate that the size of this lag may be related to a larger expansion of carbon-rich, southern-sourced waters into the Northern Hemisphere in MIS 6, providing a larger carbon reservoir that requires more time to be depleted.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-11-28
    Description: The record of past greenhouse gas composition from ice cores is crucial for our understanding of global climate change. Future ice core projects will aim to extend both the temporal coverage (extending the timescale to 1.5 Myr) and the temporal resolution of existing records. This implies a strongly limited sample availability, increasing demands on analytical accuracy and precision, and the need to reuse air samples extracted from ice cores for multiple gas analyses. To meet these requirements, we designed and developed a new analytical system that combines direct absorption laser spectroscopy in the mid-infrared (mid-IR) with a quantitative sublimation extraction method. Here, we focus on a high-precision dual-laser spectrometer for the simultaneous measurement of CH4, N2O, and CO2 concentrations, as well as δ13C(CO2). Flow-through experiments at 5 mbar gas pressure demonstrate an analytical precision (1 σ) of 0.006 ppm for CO2, 0.02 ‰ for δ13C(CO2), 0.4 ppb for CH4, and 0.1 ppb for N2O, obtained after an integration time of 100 s. Sample–standard repeatabilities (1 σ) of discrete samples of 1 mL STP (Standard Temperature and Pressure) amount to 0.03 ppm, 2.2 ppb, 1 ppb, and 0.04 ‰ for CO2, CH4, N2O, and δ13C(CO2), respectively. The key elements to achieve this performance are a custom-developed multipass absorption cell, custom-made high-performance data acquisition and laser driving electronics, and a robust calibration approach involving multiple reference gases. The assessment of the spectrometer capabilities in repeated measurement cycles of discrete air samples – mimicking the procedure for external samples such as air samples from ice cores – was found to fully meet our performance criteria for future ice core analysis. Finally, this non-consumptive method allows the reuse of the precious gas samples for further analysis, which creates new opportunities in ice core science.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-04-14
    Description: Together with the latent heat stored in glacial ice sheets, the ocean heat uptake carries the lion's share of glacial–interglacial changes in the planetary heat content, but little direct information on the global mean ocean temperature (MOT) is available to constrain the ocean temperature response to glacial–interglacial climate perturbations. Using ratios of noble gases and molecular nitrogen trapped in the Antarctic EPICA Dome C ice core, we are able to reconstruct MOT for peak glacial and interglacial conditions during the last 700 000 years and explore the differences between these extrema. To this end, we have to correct the noble gas ratios for gas transport effects in the firn column and gas loss fractionation processes of the samples after ice core retrieval using the full elemental matrix of N2, Ar, Kr, and Xe in the ice and their individual isotopic ratios. The reconstructed MOT in peak glacials is consistently about 3.3 ± 0.4 ∘C cooler compared to the Holocene. Lukewarm interglacials before the Mid-Brunhes Event 450 kyr ago are characterized by 1.6 ± 0.4 ∘C lower MOT than the Holocene; thus, glacial–interglacial amplitudes were only about 50 % of those after the Mid-Brunhes Event, in line with the reduced radiative forcing by lower greenhouse gas concentrations and their Earth system feedbacks. Moreover, we find significantly increased MOTs at the onset of Marine Isotope Stage 5.5 and 9.3, which are coeval with CO2 and CH4 overshoots at that time. We link these CO2 and CH4 overshoots to a resumption of the Atlantic Meridional Overturning Circulation, which is also the starting point of the release of heat previously accumulated in the ocean during times of reduced overturning.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    NATURE PUBLISHING GROUP
    In:  EPIC3Nature Geoscience, NATURE PUBLISHING GROUP, 6(10), pp. 885-890, ISSN: 1752-0894
    Publication Date: 2019-07-17
    Description: During the last glacial cycle, greenhouse gas concentrations fluctuated on decadal and longer timescales. Concentrations of methane, as measured in polar ice cores, show a close connection with Northern Hemisphere temperature variability, but the contribution of the various methane sources and sinks to changes in concentration is still a matter of debate. Here we assess changes in methane cycling over the past 160,000 years by measurements of the carbon isotopic composition δ13C of methane in Antarctic ice cores from Dronning Maud Land and Vostok. We find that variations in the δ13C of methane are not generally correlated with changes in atmospheric methane concentration, but instead more closely correlated to atmospheric CO2 concentrations. We interpret this to reflect a climatic and CO2-related control on the isotopic signature of methane source material, such as ecosystem shifts in the seasonally inundated tropical wetlands that produce methane. In contrast, relatively stable δ13C values occurred during intervals of large changes in the atmospheric loading of methane. We suggest that most methane sources—most notably tropical wetlands—must have responded simultaneously to climate changes across these periods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Format: application/pdf
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-11-28
    Description: The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (δ13Catm), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of δ13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 yr BP). The dataset is archived on the data repository PANGEA® (www.pangea.de) under 10.1594/PANGAEA.817041. The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4‰ shift to heavier values between the mean δ13Catm level in the Penultimate (~ 140 000 yr BP) and Last Glacial Maximum (~ 22 000 yr BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...