ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (6)
  • Molecular Diversity Preservation International  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-05-29
    Description: Low-cost sensors based on the optical particle counter (OPC) are increasingly being used to collect particulate matter (PM) data at high space and time resolution. In spite of their huge explorative potential, practical guidelines and recommendations for their use are still limited. In this work, we outline a few best practices for the optimal use of PM low-cost sensors based on the results of an intensive field campaign performed in Bologna (44°30′ N, 11°21′ E; Italy) under different weather conditions. Briefly, the performances of a series of sensors were evaluated against a calibrated mainstream OPC with a heated inlet, using a robust approach based on a suite of statistical indexes capable of evaluating both correlations and biases in respect to the reference sensor. Our results show that the sensor performance is sensibly affected by both time resolution and weather with biases maximized at high time resolution and high relative humidity. Optimization of PM data obtained is therefore achievable by lowering time resolution and applying suitable correction factors for hygroscopic growth based on the inherent particle size distribution.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-31
    Description: Biogenic silica is the major component of the external skeleton of marine micro-organisms, such as diatoms, which, after the organisms death, settle down onto the seabed. These micro-organisms are involved in the CO2 cycle because they remove it from the atmosphere through photosynthesis. The biogenic silica content in marine sediments, therefore, is an indicator of primary productivity in present and past epochs, which is useful to study the CO2 trends. Quantification of biosilica in sediments is traditionally carried out by wet chemistry followed by spectrophotometry, a time-consuming analytical method that, besides being destructive, is affected by a strong risk of analytical biases owing to the dissolution of other silicatic components in the mineral matrix. In the present work, the biosilica content was directly evaluated in sediment samples, without chemically altering them, by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Quantification was performed by combining the multivariate standard addition method (MSAM) with the net analyte signal (NAS) procedure to solve the strong matrix effect of sediment samples. Twenty-one sediment samples from a sediment core and one reference standard sample were analyzed, and the results (extrapolated concentrations) were found to be comparable to those obtained by the traditional wet method, thus demonstrating the feasibility of the ATR-FTIR-MSAM-NAS approach as an alternative method for the quantification of biosilica. Future developments will cover in depth investigation on biosilica from other biogenic sources, the extension of the method to sediments of other provenance, and the use higher resolution IR spectrometers.
    Electronic ISSN: 1420-3049
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-24
    Description: We apply the Global Modeling Initiative (GMI) chemistry and transport model driven by NASA's MERRA assimilated meteorological data to simulate the seasonal variations in two radionuclide aerosol tracers (terrigenous 210Pb and cosmogenic 7Be) at the WMO-GAW station of Mt. Cimone (44°12′ N, 10°42′ E; 2165 m a.s.l.; Italy), which is representative of free-tropospheric conditions most of the year, during 2005 with an aim to understand the roles of transport and precipitation scavenging processes in controlling their seasonality. The total precipitation field in the MERRA data set is evaluated with the Global Precipitation Climatology Project (GPCP) observations, and generally good agreement is found. The model reproduces reasonably the observed seasonal pattern of 210Pb concentrations, characterized by a wintertime minimum due to lower 222Rn emissions and weaker uplift from the boundary layer and summertime maxima resulting from strong convection over the continent. The observed seasonal behavior of 7Be concentrations shows a winter minimum, a summer maximum, and a secondary spring maximum. The model captures the observed 7Be pattern in winter–spring, which is linked to the larger stratospheric influence during spring. However, the model tends to underestimate the observed 7Be concentrations in summer, partially due to the sensitivity to spatial sampling in the model. Model sensitivity experiments indicate a dominant role of precipitation scavenging (vs. dry deposition and convection) in controlling the seasonality of 210Pb and 7Be concentrations at Mt. Cimone.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-06
    Description: This paper describes the aerosol measurement setup and results obtained during the BEXUS18 (Balloon-borne Experiments for University Students) stratospheric balloon within the A5-Unibo (Advanced Atmospheric Aerosol Acquisition and Analysis) experiment performed on 10 October 2014 in northern Sweden (Kiruna). The experimental setup was designed and developed by the University of Bologna with the aim of collecting and analyzing vertical profiles of atmospheric ions and particles together with atmospheric parameters (temperature, relative humidity, and pressure) all along the stratospheric ascent of the BEXUS18 stratospheric balloon. Particle size distributions were measured with the MeteoModem Light Optical Aerosol Counter (LOAC) and air ion density was measured with a set of two commercial and portable ion counters. Though the experimental setup was based upon relatively low-cost and light-weight sensors, vertical profiles of all the parameters up to an altitude of about 27 km were successfully collected. The results obtained are useful for elucidating the relationships between aerosols and charged particles between ground level and the stratosphere, with great potential in collecting and adding useful information in this field, also in the stratosphere where such measurements are rare. In particular, the equipment detected coherent vertical profiles for particles and ions, with a particularly strong correlation between negative ions and fine particles, possibly resulting from proposed associations between cosmic rays and ions as previously suggested. In addition, the detection of charged aerosols in the stratosphere is in agreement with the results obtained by a previous flight and with simulations conducted with a stratospheric ion–aerosol model. However, further measurements under stratospheric balloon flights equipped with a similar setup are needed to reach general conclusions about such important issues.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-22
    Description: This paper describes the aerosol measurements setup and results obtained during the BEXUS18 stratospheric balloon within the A5-Unibo (Advanced Atmospheric Aerosol Acquisition and Analysis) experiment performed on October 10th, 2014 in northern Sweden (Kiruna). The experimental setup was designed and developed by the University of Bologna with the aim of collecting and analyzing vertical profiles of atmospheric ions and particles together with atmospheric parameters (temperature, relative humidity and pressure) all along the stratospheric ascent of the BEXUS18 stratospheric balloon. Particles size distributions were measured with the MeteoModem Light Optical Aerosol Counter (LOAC) and air ion density was measured with a set of two commercial and portable ion counters. Though the experimental setup was based upon relatively low-cost and light-weight sensors, vertical profiles of all the parameters up to an altitude of about 27 km were successfully collected. The results obtained are useful for elucidating the relationships between aerosols and charged particles between ground level and the stratosphere with great potential in collecting and adding useful information in this field, also in the stratosphere where such measurements are rare. In particular, the equipment detected coherent vertical profiles for particles and ions, with a particularly strong correlation between negative ions and fine particles, possibly resulting from proposed associations between cosmic rays and ions as previously suggested. In addition, the detection of charged aerosols in the stratosphere is in agreement with the results obtained by a previous flight and with simulations conducted with a stratospheric ion-aerosol model. However, further measurements under stratospheric balloon flights equipped with a similar setup are needed to reach general conclusions on such important issues.
    Electronic ISSN: 2568-6402
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-29
    Description: Stratospheric intrusions (SI) are a topic of ongoing research, especially because of their ability to change the oxidation capacity of the troposphere and their contribution to tropospheric ozone levels. In this work, a novel tool called STEFLUX is presented, discussed and used to provide a first long-term investigation of SI over two global hot-spot regions for climate change and air pollution: the southern Himalayas and the central Mediterranean basin. The main purpose of STEFLUX is to obtain a fast-computing and reliable identification of the SI occurring at a specific location and during a specified time window. It relies on a compiled stratosphere-to-troposphere exchange (STE) climatology, which makes use of the ERA-Interim reanalysis dataset from the ECMWF, as well as a refined version of a well-established Lagrangian methodology. STEFLUX results are hereby compared to the SI observations (SIO) at two high-mountain WMO/GAW global stations in these climate hot-spots, i.e., the Nepal Climate Observatory-Pyramid (NCO-P, 5079 m a.s.l.) and Mt. Cimone (2165 m a.s.l.), which are often affected by SI events. Compared to the observational datasets at the two specific measurement sites, STEFLUX is able to detect SI on a regional scale. Furthermore, it has the advantage of retaining additional information concerning the pathway of stratospheric-affected air-masses, such as the location of tropopause crossing and other meteorological parameters along the trajectories. However, STEFLUX neglects mixing and dilution that air-masses undergo along their transport within the troposphere. Therefore, the regional-scale STEFLUX events cannot be expected to perfectly reproduce the point measurements at NCO-P and Mt. Cimone, which are also affected by small-scale (orographic) circulations. Still, the SI seasonal variability according to SI and STEFLUX agree fairly well. By exploiting the fact that the ERA-Interim reanalysis extends back to 1979, the long-term climatology of SI at NCO-P and Mt. Cimone is also assessed in this work. The analysis of the 35-year record at both stations denies the existence of any significant trend in the SI frequency, except for winter seasons at NCO-P. Furthermore, for the first time, by using the STEFLUX outputs, we investigate the potential impact of specific climate factors (i.e. ENSO, QBO and solar activity) on SI frequency variability over the Mediterranean basin and the Himalayas.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-08-04
    Description: We apply the Global Modeling Initiative (GMI) chemistry and transport model driven by the NASA’s MERRA assimilated meteorological data to simulate the seasonal variations of two radionuclide aerosol tracers (terrigenous 210Pb and cosmogenic 7Be) at the WMO-GAW station of Mt. Cimone (44°12’ N, 10°42’ E, 2165 m a.s.l., Italy), which is representative of free-tropospheric conditions most of the year, during 2005 with an aim to understand the roles of transport and precipitation scavenging processes in controlling their seasonality. The total precipitation field in the MERRA data set is evaluated with the Global Precipitation Climatology project (GPCP) observations, and a generally good agreement is found. The model reproduces reasonably the observed seasonal pattern of 210Pb concentrations, characterized by a wintertime minimum due to lower 222Rn emissions and weaker uplift from the boundary layer and summertime maxima resulting from strong convection over the continent. The observed seasonal behavior of 7Be concentrations shows a winter minimum, a summer maximum, and a secondary spring maximum. The model captures the observed 7Be pattern in winter-spring, which is linked to the larger stratospheric influence during spring. However, the model tends to underestimate the observed 7Be concentrations in summer, partially due to the sensitivity to spatial sampling in the model. Model sensitivity experiments indicate a dominant role of precipitation scavenging (versus dry deposition and convection) in controlling the seasonality of 210Pb and 7Be concentrations at Mt. Cimone.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-11-16
    Description: Stratospheric intrusion (SI) events are a topic of ongoing research, especially because of their ability to change the oxidation capacity of the troposphere and their contribution to tropospheric ozone levels. In this work, a novel tool called STEFLUX (Stratosphere-to-Troposphere Exchange Flux) is presented, discussed, and used to provide a first long-term investigation of SI over two global hot-spot regions for climate change and air pollution: the southern Himalayas and the central Mediterranean Basin. The main purpose of STEFLUX is to obtain a fast-computing and reliable identification of the SI events occurring at a specific location and during a specified time window. It relies on a compiled stratosphere-to-troposphere exchange (STE) climatology, which makes use of the ERA-Interim reanalysis dataset from the ECMWF, as well as a refined version of a well-established Lagrangian methodology. STEFLUX results are compared to the SI observations (SIO) at two high-mountain WMO/GAW global stations in these climate hot spots, i.e., the Nepal Climate Observatory-Pyramid (NCO-P, 5079 m a.s.l.) and Mt. Cimone (2165 m a.s.l.), which are often affected by SI events. Compared to the observational datasets at the two specific measurement sites, STEFLUX is able to detect SI events on a regional scale. Furthermore, it has the advantage of retaining additional information concerning the pathway of stratospheric-affected air masses, such as the location of tropopause crossing and other meteorological parameters along the trajectories. However, STEFLUX neglects mixing and dilution that air masses undergo along their transport within the troposphere. Therefore, the regional-scale STEFLUX events cannot be expected to perfectly reproduce the point measurements at NCO-P and Mt. Cimone, which are also affected by small-scale (orographic) circulations. Still, the seasonal variability in SI events according to SIO and STEFLUX agrees fairly well. By exploiting the fact that the ERA-Interim reanalysis extends back to 1979, the long-term climatology of SI events at NCO-P and Mt. Cimone is also assessed in this work. The analysis of the 35-year record at both stations denies the existence of any significant trend in the SI frequency, except for winter seasons at NCO-P. Furthermore, for the first time, by using the STEFLUX outputs, we investigate the potential impact of specific climate factors (i.e. ENSO, QBO, and solar activity) on SI frequency variability over the Mediterranean Basin and the Himalayas.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...