ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-26
    Description: Mobile differential optical absorption spectroscopy (mobile DOAS) is an optical remote sensing method that can rapidly measure trace gas emission flux from air pollution sources (such as power plants, industrial areas, and cities) in real time. Generally, mobile DOAS is influenced by wind, drive velocity, and other factors, especially in the usage of wind field when the emission flux in a mobile DOAS system is observed. This paper presents a detailed error analysis and NOx emission with mobile DOAS system from a power plant in Shijiazhuang city, China. Comparison of the SO2 emission flux from mobile DOAS observations with continuous emission monitoring system (CEMS) under different drive speeds and wind fields revealed that the optimal drive velocity is 30–40 km/h, and the wind field at plume height is selected when mobile DOAS observations are performed. In addition, the total errors of SO2 and NO2 emissions with mobile DOAS measurements are 32% and 30%, respectively, combined with the analysis of the uncertainties of column density, wind field, and drive velocity. Furthermore, the NOx emission of 0.15 ± 0.06 kg/s from the power plant is estimated, which is in good agreement with that from CEMS observations of 0.17 ± 0.07 kg/s. This study has significantly contributed to the measurement of the mobile DOAS system on emission from air pollution sources, thus improving estimation accuracy.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-29
    Description: Nitrous acid (HONO), an important precursor of the hydroxyl radical (OH), plays a key role in atmospheric chemistry, but its sources are still debated. The production of HONO on aerosol surfaces or on ground surfaces in nocturnal atmospheres remains controversial. The vertical profile provides vertical information on HONO and NO2 to understand the nocturnal HONO production and loss. In this study, we report the first high-resolution (
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-02
    Description: Recently, Chinese cities have suffered severe events of haze air pollution, particularly in the North China Plain (NCP). Investigating the temporal and spatial distribution of pollutants, emissions, and pollution transport is necessary to better understand the effect of various sources on air quality. We report on mobile differential optical absorption spectroscopy (mobile DOAS) observations of precursors SO2 and NO2 vertical columns in the NCP in the summer of 2013 (from 11 June to 7 July) in this study. The different temporal and spatial distributions of SO2 and NO2 vertical column density (VCD) over this area are characterized under various wind fields. The results show that transport from the southern NCP strongly affects air quality in Beijing, and the transport route, particularly SO2 transport on the route of Shijiazhuang–Baoding–Beijing, is identified. In addition, the major contributors to SO2 along the route of Shijiazhuang–Baoding–Beijing are elevated sources compared to low area sources for the route of Dezhou–Cangzhou–Tianjin–Beijing; this is found using the interrelated analysis between in situ and mobile DOAS observations during the measurement periods. Furthermore, the discussions on hot spots near the city of JiNan show that average observed width of polluted air mass is 11.83 and 17.23 km associated with air mass diffusion, which is approximately 60 km away from emission sources based on geometrical estimation. Finally, a reasonable agreement exists between the Ozone Monitoring Instrument (OMI) and mobile DOAS observations, with a correlation coefficient (R2) of 0.65 for NO2 VCDs. Both datasets also have a similar spatial pattern. The fitted slope of 0.55 is significantly less than unity, which can reflect the contamination of local sources, and OMI observations are needed to improve the sensitivities to the near-surface emission sources through improvements of the retrieval algorithm or the resolution of satellites.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-24
    Description: We report the development of an instrument for simultaneous fast measurements of glyoxal (CHOCHO) and NO2 based on incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) in the 438–465 nm wavelength region. The highly reflective cavity mirrors were protected from contamination by N2 purge gas. The reduction of the effective cavity length was calibrated by measuring collision-induced oxygen absorption at ∼477 nm of pure oxygen gas input with and without the N2 mirror purge gas. The detection limits of the developed system were evaluated to be 23 parts per trillion by volume (pptv, 2σ) for CHOCHO and 29 pptv (2σ) for NO2 with a 30 s acquisition time. A potential cross-interference of NO2 absorption on accurate CHOCHO measurements has been investigated in this study, as the absorption of NO2 in the atmosphere could often be several hundred-fold higher than that of glyoxal, especially in contaminated areas. Due to non-linear spectrometer dispersion, simulation spectra of NO2 based on traditional convolution simulation did not match the measurement spectra well enough. In this work, we applied actual NO2 spectral profile measured by the same spectrometer as a reference spectral profile in subsequent atmospheric spectral analysis and retrieval of NO2 and CHOCHO concentrations. This effectively reduced the spectral fitting residuals. The instrument was successfully deployed for 24 d of continuous measurements of CHOCHO and NO2 in the atmosphere in a comprehensive field campaign in Beijing in June 2017.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-17
    Description: Nitric oxide (NO) and nitrogen dioxide (NO2) are relevant to air quality due to their roles in tropospheric ozone (O3) production. In China, NOx emissions are very high and NOx emissions exhausted from on-road vehicles make up 20 % of total NOx emissions. In order to detect the NO and NO2 emissions on road, a dual-channel cavity ring-down spectroscopy (CRDS) system for NO2 and NO detection has been developed. In the system, NO is converted to NO2 by its reaction with excess O3 in the NOx channel, such that NO can be determined through the difference between two channels. The detection limits of NO2 and NOx for the system are estimated to be about 0.030 (1σ, 1 s) and 0.040 ppb (1σ, 1 s), respectively. Considering the error sources of NO2 absorption cross section and RL determination, the total uncertainty of NO2 measurements is about 5%. The performance of the system was validated against a chemiluminescence (CL) analyser (42i, Thermo Scientific, Inc.) by measuring the NO2 standard mixtures. The measurement results of NO2 showed a linear correction factor (R2) of 0.99 in a slope of 1.031±0.006, with an offset of (-0.940±0.323) ppb. An intercomparison between the system and a cavity-enhanced absorption spectroscopy (CEAS) instrument was also conducted separately for NO2 measurement in an ambient environment. Least-squares analysis showed that the slope and intercept of the regression line are 1.042±0.002 and (-0.393±0.040) ppb, respectively, with a linear correlation factor of R2=0.99. Another intercomparison conducted between the system and the CL analyser for NO detection also showed a good agreement within their uncertainties, with an absolute shift of (0.352±0.013) ppb, a slope of 0.957±0.007 and a correlation coefficient of R2=0.99. The system was deployed on the measurements of on-road vehicle emission plumes in Hefei, and the different emission characteristics were observed in the different areas of the city. The successful deployment of the system has demonstrated that the instrument can provide a new method for retrieving fast variations in NO and NO2 plumes.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-25
    Description: A ground-based high-resolution Fourier transform spectrometer (FTS) station has been established in Hefei, China to remotely measure CO2, CO and other greenhouse gases based on near-infrared solar absorption spectra. Total column measurements of atmospheric CO2 and CO were successfully obtained from July 2014 to April 2016. The spectra collected with an InSb detector in the first year were compared with those collected by an InGaAs detector from July 2015, demonstrating that InGaAs spectra have better signal-to-noise ratios and rms of spectral fitting residuals relative to InSb spectra. Consequently, the measurement precision of the retrieved XCO2 and XCO for InGaAs spectra is superior to InSb spectra, with about 0.04 and 0.09 % for XCO2, and 1.07 and 2.00 % for XCO within clear-sky days respectively. Daily and monthly averages of column-averaged dry air mole fraction of CO2 show a clear seasonal cycle, while the daily and monthly averages of XCO displayed no seasonal variation. Also, we analysed the relationship of the anomalies of XCO and XCO2, found that the correlations are only observable for individual days, and the data under different prevailing wind conditions during the observations displayed weak correlation. The observations based on the high-resolution FTS were also compared with the temporally coinciding measurements taken with a low-resolution solar FTS instrument, the EM27/SUN. Ratioing the daily averaged XCO2 of EM27 and FTS gives an overall calibration factor of 0.996 ± 0.001. We also compared ground-based observations from the Tsukuba TCCON station with our observations, the results showing that the variation in phase and seasonal amplitude of XCO2 are similar to our results, but the variation of XCO in Tsukuba is quite different from our data in Hefei. To further evaluate our retrieved data, we made use of satellite measurements. The direct comparison of our observations with the Greenhouse Gases Observing Satellite (GOSAT) data shows good agreement of daily median XCO2, with a bias of −0.52 ppm and standard deviation of 1.63 ppm. The correlation coefficient (R2) is 0.79 for daily median XCO2 between our FTS and GOSAT observations. Daily median Orbiting Carbon Observatory 2 (OCO-2) data produce a positive bias of 0.81 ppm and standard deviation of 1.73 ppm relative to our ground-based data. Our daily median XCO2 also show strong correlation with OCO-2 data, with correlation coefficient (R2) of 0.83. Although there were a limited number of data during the observations due to instrument downtime and adverse weather, the results confirm the suitability of the observatory for ground-based long-term measurements of greenhouse gases with high precision and accuracy, and fulfil the requirements of the Total Carbon Column Observing Network (TCCON).
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-30
    Description: Gaseous nitrous acid (HONO) is an important source of OH radicals in the troposphere. However, its source, especially that during daytime hours remains unclear. We present an instrument for simultaneous unambiguous measurements of HONO and NO2 with high time resolution based on incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). To achieve robust performance and system stability under different environment conditions, the current IBBCEAS instrument has been developed with significant improvements in terms of efficient sampling as well as resistance against vibration and temperature change, and the IBBCEAS instrument also has low power consumption and a compact design that can be easily deployed on different platforms powered by a high-capacity lithium ion battery. The effective cavity length of the IBBCEAS was determined using the absorption of O2-O2 to account for the “shortening” effect caused by the mirror purge flows. The wall loss for HONO was estimated to be 2.0 % via a HONO standard generator. Measurement precisions (2σ) for HONO and NO2 are about 180 and 340 ppt in 30 s, respectively. A field inter-comparison was carried out at a rural suburban site in Wangdu, Hebei Province, China. The concentrations of HONO and NO2 measured by IBBCEAS were compared with a long optical path absorption photometer (LOPAP) and a NOx analyzer (Thermo Fisher Electron Model 42i), and the results showed very good agreement, with correlation coefficients (R2) of HONO and NO2 being ∼0.89 and ∼0.95, respectively; in addition, vehicle deployments were also tested to enable mobile measurements of HONO and NO2, demonstrating the promising potential of using IBBCEAS for in situ, sensitive, accurate and fast simultaneous measurements of HONO and NO2 in the future.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-07-11
    Description: During polar spring, the presence of reactive bromine in the polar boundary layer is considered to be the main cause of ozone depletion and mercury deposition. However, many uncertainties still remain regarding understanding the mechanisms of the chemical process and source of the bromine. As Arctic sea ice has recently been dramatically reduced, it is critical to investigate the mechanisms using more accurate measurements with higher temporal and spatial resolution. In this study, a typical process of enhanced bromine and depleted ozone in the Ny-Ålesund boundary layer in late April 2015 was observed by applying ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) technique. The results showed that there were bromine monoxide (BrO) slant columns as high as 5.6 × 1014 molec cm−2 above the Kings Bay area on 26 April. Meanwhile, the boundary layer ozone and gaseous elemental mercury (GEM) were synchronously reduced by 85 and 90 %, respectively. Based on the meteorology, sea ice distribution and air mass history, the sea ice in the Kings Bay area, which emerged for only a very short period of time when the enhanced BrO was observed, was considered to be the major source of this bromine enhancement event. The oxidized GEM may be directly deposited onto snow/ice and thereby influence the polar ecosystem.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-09-12
    Description: Recently, Chinese cities have suffered severe events of haze air pollution, particularly in the North China Plain (NCP). Investigating the temporal and spatial distribution of pollutants, emissions, and pollution transport is necessary to better understand the effect of various sources on air quality. We report on mobile differential optical absorption spectroscopy (mobile DOAS) observations of precursors SO2 and NO2 vertical columns in NCP in summer of 2013 (from 11 June to 7 July) in this study. The different temporal and spatial distributions of SO2 and NO2 vertical column density (VCD) over this area are characterized under various wind fields. The results show that the transport from southern NCP strongly affects the air quality in Beijing, and the transport route, particularly SO2 transport of Shijiazhuang–Baoding–Beijing is identified. In addition, the major contributors to SO2 along the route of Shijiazhuang–Baoding–Beijing are elevated sources and low area sources for the route of Dezhou–Cangzhou–Tianjin–Beijing are found using the interrelated analysis between in situ and mobile DOAS observations during the measurement periods. Furthermore, the discussion of hot spot near Ji’nan City shows that the average observed width of polluted air mass is 11.83 km and 17.23 km associated with air mass diffusion, which is approximately 60 km away from emission sources based on geometrical estimation. Finally, a reasonable agreement exists between OMI and mobile DOAS observations with correlation coefficient (R2) of 0.65 for NO2 VCDs. Both datasets also have similar spatial pattern. The fitted slop of 0.55 is significantly less than unity can reflect the contamination of local sources and OMI observations need to improve the sensitivities to the near-surface emission sources through the improvements of retrieval algorithm or resolution of satellites.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-23
    Description: Bromine monoxide is a reactive halogen species which has crucial impact on the chemistry of the tropospheric polar boundary layer. During polar spring, BrO enhancement can be detected in both northern and southern Polar Regions, while the boundary layer ozone depletion events occur. A considerable challenge for understanding enhanced BrO and the associated ODEs is the difficulty of real-time observations. In this study, a typical process of enhanced bromine and depleted ozone in late April, 2015 at Ny-Ålesund boundary layer was observed using ground-based Multi Axis-Differential Optical Absorption Spectroscopy (MAX-DOAS) technique. The results showed that there were as high as 8 × 1014 molecular cm−2 BrO slant columns above the Kings Bay area in 26 April. Considering meteorology, sea ice distribution and air mass history, the floating sea ice in the Kings Bay area was considered as the major source of this bromine enhancement event. During this period, the boundary layer ozone and gaseous elemental mercury (GEM) was synchronously reduced by 85 % and 90 % separately. The kinetic calculation showed that the ozone loss rate is 10.3 ppbv h−1, which is extremely high compared to other area. The GEM loss rate is about 0.25 ng m−3 h−1. The oxidized GEM may directly deposit to snow/ice and thereby influence the polar ecosystem.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...