ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-26
    Description: The middle Miocene climate transition ∼ 14 Ma marks a fundamental step towards the current “ice-house” climate, with a ∼ 1 ‰ δ18O increase and a ∼ 1 ‰ transient δ13C rise in the deep ocean, indicating rapid expansion of the East Antarctic Ice Sheet associated with a change in the operation of the global carbon cycle. The variation of atmospheric CO2 across the carbon-cycle perturbation has been intensely debated as proxy records of pCO2 for this time interval are sparse and partly contradictory. Using boron isotopes (δ11B) in planktonic foraminifers from Ocean Drilling Program (ODP) Site 1092 in the South Atlantic, we show that long-term pCO2 varied at 402 kyr periodicity between ∼ 14.3 and 13.2 Ma and follows the global δ13C variation remarkably well. This suggests a close link to precessional insolation forcing modulated by eccentricity, which governs the monsoon and hence weathering intensity, with enhanced weathering and decreasing pCO2 at high eccentricity and vice versa. The ∼ 50 kyr lag of δ13C and pCO2 behind eccentricity in our records may be related to the slow response of weathering to orbital forcing. A pCO2 drop of ∼ 200 µatm before 13.9 Ma may have facilitated the inception of ice-sheet expansion on Antarctica, which accentuated monsoon-driven carbon cycle changes through a major sea-level fall, invigorated deep-water ventilation, and shelf-to-basin shift of carbonate burial. The temporary rise in pCO2 following Antarctic glaciation would have acted as a negative feedback on the progressing glaciation and helped to stabilize the climate system on its way to the late Cenozoic ice-house world.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The tectonically driven closure of tropical seaways during the Pliocene epoch (approx5–2 million years (Myr) ago) altered ocean circulation and affected the evolution of climate. Plate tectonic reconstructions show that the main reorganization of one such seaway, the Indonesian Gateway, occurred between 4 and 3 Myr ago. Model simulations have suggested that this would have triggered a switch in the source of waters feeding the Indonesian throughflow into the Indian Ocean, from the warm salty waters of the South Pacific Ocean to the cool and relatively fresh waters of the North Pacific Ocean. Here we use paired measurements of the delta18O and Mg/Ca ratios of planktonic foraminifera to reconstruct the thermal structure of the eastern tropical Indian Ocean from 5.5 to 2 Myr ago. We find that sea surface conditions remained relatively stable throughout the interval, whereas subsurface waters freshened and cooled by about 4 °C between 3.5 and 2.95 Myr ago. We suggest that the restriction of the Indonesian Gateway led to the cooling and shoaling of the thermocline in the tropical Indian Ocean. We conclude that this tectonic reorganization contributed to the global shoaling of the thermocline recorded during the Pliocene epoch, possibly contributing to the development of the equatorial eastern Pacific cold tongue.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...