ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-04
    Description: The rapid increase in energy demand in the city of Reykjavik has posed the need for an additional supply of deep geothermal energy. The deep-hydraulic (re-)stimulation of well RV-43 on the peninsula of Geldinganes (north of Reykjavik) is an essential component of the plan implemented by Reykjavik Energy to meet this energy target. Hydraulic stimulation is often associated with fluid-induced seismicity, most of which is not felt on the surface but which, in rare cases, can be a nuisance to the population and even damage the nearby building stock. This study presents a first-of-its-kind pre-drilling probabilistic induced seismic hazard and risk analysis for the site of interest. Specifically, we provide probabilistic estimates of peak ground acceleration, European microseismicity intensity, probability of light damage (damage risk), and individual risk. The results of the risk assessment indicate that the individual risk within a radius of 2 km around the injection point is below 0.1 micromorts, and damage risk is below 10−2, for the total duration of the project. However, these results are affected by several orders of magnitude of variability due to the deep uncertainties present at all levels of the analysis, indicating a critical need in updating this risk assessment with in situ data collected during the stimulation. Therefore, it is important to stress that this a priori study represents a baseline model and starting point to be updated and refined after the start of the project.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-01
    Description: In January 2020, a scientific borehole planning workshop sponsored by the International Continental Scientific Drilling Program was convened at Cornell University in the northeastern United States. Cornell is planning to drill test wells to evaluate the potential to use geothermal heat from depths in the range of 2700–4500 m and rock temperatures of about 60 to 120 ∘C to heat its campus buildings. Cornell encourages the Earth sciences community to envision how these boreholes can also be used to advance high-priority subsurface research questions. Because nearly all scientific boreholes on the continents are targeted to examine iconic situations, there are large gaps in understanding of the “average” intraplate continental crust. Hence, there is uncommon and widely applicable value to boring and investigating a “boring” location. The workshop focused on designing projects to investigate the coupled thermal–chemical–hydrological–mechanical workings of continental crust. Connecting the practical and scientific goals of the boreholes are a set of currently unanswered questions that have a common root: the complex relationships among pore pressure, stress, and strain in a heterogeneous and discontinuous rock mass across conditions spanning from natural to human perturbations and short to long timescales. The need for data and subsurface characterization vital for decision-making around the prospective Cornell geothermal system provides opportunities for experimentation, measurement, and sampling that might lead to major advances in the understanding of hydrogeology, intraplate seismicity, and fluid/chemical cycling. Subsurface samples could also enable regional geological studies and geobiology research. Following the workshop, the U.S. Department of Energy awarded funds for a first exploratory borehole, whose proposed design and research plan rely extensively on the ICDP workshop recommendations.
    Print ISSN: 1816-8957
    Electronic ISSN: 1816-3459
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-27
    Description: Abstract
    Description: Faults and fractures form the largest contrast of fluid flow in the subsurface, while their permeability is highly affected by effective pressure changes. In this experimental study, fractured low-permeability Flechtingen (Rotliegend) sandstones were cyclically loaded in a MTS tri-axial compression cell. Two different loading scenarios were considered: “continuous cyclic loading” (CCL) and “progressive cyclic loading” (PCL). During continuous cyclic loading, a displaced tensile fracture was loaded hydrostatically from 2 to 60 MPa in several repeated cycles. During progressive cyclic loading, the load was increased with a step-wise function (15, 30, 45 and 60 MPa) and unloaded after every loading step. For full elasticity of rock matrix deformation each rock sample has been preconditioned up to 65 MPa. After that, an artificial tensile fracture was introduced into the sample using the Brazilian Disk test. The fractured sample was installed into the MTS triaxial cell at a given offset of 0.5 mm and hydrostatic loading was applied accordingly. The fracture permeability was measured continuously using the cubic law calculated from the hydraulic aperture. Fracture closure was measured using LVDT extensometers during the entire experiment and the resulting fracture closure and stiffness was calculated accordingly. The total deformation of the sample was corrected by the amount of elastic deformation of the rock matrix to obtain the fracture closure only. Potential changes to the fracture surface topography before and after the experiments were analysed from high-resolution surface scans obtained by a 3D profilometer using the fringe pattern projection. The scale-independent roughness exponent was calculated using power spectral density method assuming self-affinity. The fracture aperture distribution and contact-area ratio was calculated by matching the best fitting principal planes of the bottom and top surface and applying a grid search algorithm. The results showed a “stress-memory” effect of fracture stiffness during progressive loading that can be used to identify previous stress states in fractures. This effect is characterized by a transition from a non-linear to a linear (reversible to non-reversible) behaviour of specific fracture stiffness when a previous stress-maximum is exceeded. Furthermore, the evolution of fracture permeability shows less reduction during progressive cyclic loading compared to continuous cyclic loading. The data measured during the flow-through experiment under varying effective pressure are provided in the file “MTS_data.zip”. The data are provided as separate text-files as well as in Excel format with different spreadsheets, such that each figure in the paper can be recalculated and that the underlying data is comprehensive. The name of all three rock samples is given in the file name including the type of the experiment (CCL or PCL). The fracture surfaces and the fracture aperture distributions are found within the file “Surface_data.zip”. This file contains the fracture data of each of the three rock samples as point cloud data (text-files), as well the data calculated from the surfaces.
    Keywords: laboratory testing ; fracture ; permeability ; stiffness ; cyclic loading ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTARY ROCKS 〉 SEDIMENTARY ROCK PHYSICAL/OPTICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 SEDIMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 STRAIN
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-24
    Description: Abstract
    Description: Near Reykjavik/Iceland, a "soft stimulation” geothermal experiment was performed in the frame of the DESTRESS project in 2019. The installed seismic stations consist of short period, and borehole stations in and around Geldinganes, NE of Reykjavik. The task of this network is the monitoring of the seismic events in the area around the stimulation site. The installation started in late 2018 with 6 short period stations (Reykjavik Energy). Since July 2019 additional seismic stations were integrated as a small scale array on the island Geldinganes and additional short period stations. A borehole geophone chain was installed with 17 short period 3-component geophones with a vertical spacing of 10 meter in the depth interval 1040m to 1200 m. Waveform data are available from the GEOFON data centre, under network code YG, and are embargoed until November 2025.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Other , Seismic Network
    Format: ~500G
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-12-06
    Description: Other
    Description: Earthquakes associated with fluid injection in various geo-energy settings, such as shale gas and deep geothermal energy, have shelved many projects with great potential. However, the injection-rate dependence of earthquake nucleation length, i.e., the slowly slipping (creeping) fault length in preparation for a subsequent earthquake (Kaneko & Lapusta, 2008), remains elusive. In this study, we take a step towards this issue by performing fluid injection experiments on low-permeability granite samples containing a critically stressed sawcut fault at different local injection rates (0.2 mL/min and 0.8 mL/min) and confining pressures (31 MPa and 61 MPa) (c. f., Ji & Wu, 2017; Wang et al., 2020). An array of local strain gauges and acoustic emission (AE) hypocenter locations were used to monitor the precursory slip of critically stressed faults before injection-induced stick-slip failure (c. f., Passelègue et al., 2020; Wang et al., 2020). The nucleation length was determined for each injection-induced stick-slip event, and its dependence on effective normal stress and injection rate was explored. Herein, we compile the processed data obtained from the experiments in four Excel worksheets. The full description of the methods is provided in Ji et al. (2022).
    Keywords: Injection-induced seismicity ; Injection rate ; Earthquake nucleation length ; Fluid injection ; Hydraulic stimulation ; Fault slip ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS ; geological process 〉 seismic activity 〉 earthquake
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...